5.25.2 Problems 101 to 200

Table 5.1101: Second order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

1259

\[ {}6 y^{\prime \prime }-5 y^{\prime }+y = 0 \]

1260

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

1261

\[ {}y^{\prime \prime }+5 y^{\prime }+3 y = 0 \]

1262

\[ {}2 y^{\prime \prime }+y^{\prime }-4 y = 0 \]

1263

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]

1264

\[ {}4 y^{\prime \prime }-y = 0 \]

1265

\[ {}y^{\prime \prime }-y = 0 \]

1266

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

1267

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

1268

\[ {}4 y^{\prime \prime }-y = 0 \]

1269

\[ {}y^{\prime \prime }-\left (2 \alpha -1\right ) y^{\prime }+\alpha \left (\alpha -1\right ) y = 0 \]

1270

\[ {}y^{\prime \prime }+\left (3-\alpha \right ) y^{\prime }-2 \left (\alpha -1\right ) y = 0 \]

1271

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

1272

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

1273

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

1274

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

1275

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 0 \]

1276

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

1277

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

1278

\[ {}4 y^{\prime \prime }+9 y = 0 \]

1279

\[ {}y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4} = 0 \]

1280

\[ {}9 y^{\prime \prime }+9 y^{\prime }-4 y = 0 \]

1281

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]

1282

\[ {}y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4} = 0 \]

1283

\[ {}y^{\prime \prime }+4 y = 0 \]

1284

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

1285

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

1286

\[ {}y^{\prime \prime }+y = 0 \]

1287

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]

1288

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

1289

\[ {}u^{\prime \prime }-u^{\prime }+2 u = 0 \]

1290

\[ {}5 u^{\prime \prime }+2 u^{\prime }+7 u = 0 \]

1291

\[ {}y^{\prime \prime }+2 y^{\prime }+6 y = 0 \]

1292

\[ {}y^{\prime \prime }+2 a y^{\prime }+\left (a^{2}+1\right ) y = 0 \]

1303

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

1304

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

1305

\[ {}4 y^{\prime \prime }-4 y^{\prime }-3 y = 0 \]

1306

\[ {}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]

1307

\[ {}y^{\prime \prime }-2 y^{\prime }+10 y = 0 \]

1308

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

1309

\[ {}4 y^{\prime \prime }+17 y^{\prime }+4 y = 0 \]

1310

\[ {}16 y^{\prime \prime }+24 y^{\prime }+9 y = 0 \]

1311

\[ {}25 y^{\prime \prime }-20 y^{\prime }+4 y = 0 \]

1312

\[ {}2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

1313

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

1314

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

1315

\[ {}9 y^{\prime \prime }+6 y^{\prime }+82 y = 0 \]

1316

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

1317

\[ {}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]

1318

\[ {}y^{\prime \prime }-y^{\prime }+\frac {y}{4} = 0 \]

1355

\[ {}u^{\prime \prime }+2 u = 0 \]

1356

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+2 u = 0 \]

1483

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

1484

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

1485

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

1486

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]

1487

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

1737

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

1738

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

1739

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

1740

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

1741

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

1743

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

1744

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

1745

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

2364

\[ {}y^{\prime \prime }-y = 0 \]

2365

\[ {}6 y^{\prime \prime }-7 y^{\prime }+y = 0 \]

2366

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

2367

\[ {}3 y^{\prime \prime }+6 y^{\prime }+3 y = 0 \]

2368

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 0 \]

2369

\[ {}2 y^{\prime \prime }+y^{\prime }-10 y = 0 \]

2370

\[ {}5 y^{\prime \prime }+5 y^{\prime }-y = 0 \]

2371

\[ {}y^{\prime \prime }-6 y^{\prime }+y = 0 \]

2372

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

2376

\[ {}y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

2377

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

2378

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

2379

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

2380

\[ {}4 y^{\prime \prime }-y^{\prime }+y = 0 \]

2381

\[ {}y^{\prime \prime }+y^{\prime }+2 y = 0 \]

2382

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

2383

\[ {}2 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

2384

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]

2387

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

2388

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

2389

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

2390

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

2391

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

2392

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

2545

\[ {}y^{\prime \prime }-y = 0 \]

2546

\[ {}6 y^{\prime \prime }-7 y^{\prime }+y = 0 \]

2547

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

2548

\[ {}3 y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

2549

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 0 \]

2550

\[ {}2 y^{\prime \prime }+y^{\prime }-10 y = 0 \]

2551

\[ {}5 y^{\prime \prime }+5 y^{\prime }-y = 0 \]

2552

\[ {}y^{\prime \prime }-6 y^{\prime }+y = 0 \]

2553

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

2556

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

2557

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]