|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} x y^{\prime \prime }+2 y^{\prime }+x y = \sec \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\frac {y}{4} = -\frac {x^{2}}{2}+\frac {1}{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (\cos \left (x \right )+\sin \left (x \right )\right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )-\sin \left (x \right )\right ) y = \left (\cos \left (x \right )+\sin \left (x \right )\right )^{2} {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }+\left (\cos \left (x \right )+\sin \left (x \right )\right ) y = \left (\cos \left (x \right )-\sin \left (x \right )\right )^{2}
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime }-3 y = 3 x +1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y = 4 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} p \,x^{2} u^{\prime \prime }+q x u^{\prime }+r u = f \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+6 y^{\prime }+9 y = 50 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-4 y^{\prime }+4 y = 50 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+4 y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-4 y^{\prime }+3 y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = x +2
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = 3 x +1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+4 y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+9 y = \sin \left (3 x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y = \tan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+2 i y^{\prime }+y = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-4 y^{\prime }+5 y = 3 \,{\mathrm e}^{-x}+2 x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y = 2 \sin \left (2 x \right ) \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y = \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 4 y^{\prime \prime }-y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 6 y^{\prime \prime }+5 y^{\prime }-6 y = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+\omega ^{2} y = A \cos \left (\omega x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 i y^{\prime }-y = {\mathrm e}^{i x}-2 \,{\mathrm e}^{-i x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+4 y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+4 y = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-4 y = 3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-2 y = x^{2}+\cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+9 y = x^{2} {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y = x \,{\mathrm e}^{x} \cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+i y^{\prime }+2 y = 2 \cosh \left (2 x \right )+{\mathrm e}^{-2 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }-4 \pi y = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime }-2 y^{\prime } = x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \frac {y^{\prime \prime }}{y^{\prime }} = x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } y^{\prime } = x \left (1+x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime }+y^{\prime } = 4 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+{y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime }-3 y^{\prime } = 5 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+4 y = 3 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-3 y^{\prime }+2 y = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y = 2 \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime } = 12 x -10
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime }+y = 6 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y^{\prime } = 10 x^{4}+2
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-3 y = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+4 y = \tan \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+y = \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y = \cot \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y = \cot \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y = x \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y = \tan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime }+y = 2 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \left (x^{2}-1\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = x \left (1+x \right )^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime }-5 y = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y = {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }+4 y = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+3 y^{\prime }+4 y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = \tan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime } = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+3 y^{\prime }+2 y = 2 x -1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-2 y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+2 y^{\prime }-y = x \,{\mathrm e}^{x} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+9 y = \sec \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+4 y^{\prime }+4 y = x \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {2}{x}
\]
|
✓ |
✓ |
✓ |
|