# |
ODE |
Mathematica |
Maple |
\[
{}y^{\prime \prime }+4 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-9 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+25 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+13 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-15 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}2 y^{\prime \prime }-y^{\prime }-y = 0
\] |
✓ |
✓ |
|
\[
{}4 y^{\prime \prime }+8 y^{\prime }+3 y = 0
\] |
✓ |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0
\] |
✓ |
✓ |
|
\[
{}6 y^{\prime \prime }-7 y^{\prime }-20 y = 0
\] |
✓ |
✓ |
|
\[
{}35 y^{\prime \prime }-y^{\prime }-12 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-5 y = 0
\] |
✓ |
✓ |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 0
\] |
✓ |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-10 y = 0
\] |
✓ |
✓ |
|
\[
{}2 y^{\prime \prime }-7 y^{\prime }+3 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+5 y = 0
\] |
✓ |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+25 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 0
\] |
✓ |
✓ |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+4 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+2 i y^{\prime }+3 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-i y^{\prime }+6 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = \left (-2+2 i \sqrt {3}\right ) y
\] |
✓ |
✓ |
|
\[
{}x^{\prime \prime }+4 x = 0
\] |
✓ |
✓ |
|
\[
{}x^{\prime \prime }+9 x = 0
\] |
✓ |
✓ |
|
\[
{}x^{\prime \prime }-x^{\prime }-2 x = 0
\] |
✓ |
✓ |
|
\[
{}x^{\prime \prime }+8 x^{\prime }+15 x = 0
\] |
✓ |
✓ |
|
\[
{}x^{\prime \prime }+6 x^{\prime }+25 x = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-9 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+25 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+13 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-15 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}2 y^{\prime \prime }-y^{\prime }-y = 0
\] |
✓ |
✓ |
|
\[
{}4 y^{\prime \prime }+8 y^{\prime }+3 y = 0
\] |
✓ |
✓ |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0
\] |
✓ |
✓ |
|
\[
{}6 y^{\prime \prime }-7 y^{\prime }-20 y = 0
\] |
✓ |
✓ |
|
\[
{}35 y^{\prime \prime }-y^{\prime }-12 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-4 y = 0
\] |
✓ |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-10 y = 0
\] |
✓ |
✓ |
|
\[
{}2 y^{\prime \prime }-7 y^{\prime }+3 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+5 y = 0
\] |
✓ |
✓ |
|
\[
{}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+25 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 0
\] |
✓ |
✓ |
|
\[
{}9 y^{\prime \prime }+6 y^{\prime }+4 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+25 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-2 i y^{\prime }+3 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-i y^{\prime }+6 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = \left (-2+2 i \sqrt {3}\right ) y
\] |
✓ |
✓ |
|
\[
{}\frac {x^{\prime \prime }}{2}+3 x^{\prime }+4 x = 0
\] |
✓ |
✓ |
|
\[
{}3 x^{\prime \prime }+30 x^{\prime }+63 x = 0
\] |
✓ |
✓ |
|
\[
{}x^{\prime \prime }+8 x^{\prime }+16 x = 0
\] |
✓ |
✓ |
|
\[
{}2 x^{\prime \prime }+12 x^{\prime }+50 x = 0
\] |
✓ |
✓ |
|
\[
{}4 x^{\prime \prime }+20 x^{\prime }+169 x = 0
\] |
✓ |
✓ |
|
\[
{}2 x^{\prime \prime }+16 x^{\prime }+40 x = 0
\] |
✓ |
✓ |
|
\[
{}x^{\prime \prime }+10 x^{\prime }+125 x = 0
\] |
✓ |
✓ |
|
\[
{}4 y^{\prime \prime }-4 y^{\prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-3 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 0
\] |
✓ |
✓ |
|
\[
{}6 y^{\prime \prime }-y^{\prime }-y = 0
\] |
✓ |
✓ |
|
\[
{}2 y^{\prime \prime }-3 y^{\prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}4 y^{\prime \prime }-9 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-9 y^{\prime }+9 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-2 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = 0
\] |
✓ |
✓ |
|