5.25.8 Problems 701 to 800

Table 5.1113: Second order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

16229

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

16230

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

16231

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

16232

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

16233

\[ {}y^{\prime \prime }+y^{\prime }-y = 0 \]

16234

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

16235

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

16236

\[ {}y^{\prime \prime }-y^{\prime }-y = 0 \]

16237

\[ {}6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

16238

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

16239

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

16242

\[ {}a y^{\prime \prime }+2 b y^{\prime }+c y = 0 \]

16243

\[ {}y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

16244

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

16245

\[ {}y^{\prime \prime }-6 y^{\prime }-16 y = 0 \]

16246

\[ {}y^{\prime \prime }-16 y = 0 \]

16247

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

16250

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]

16558

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

16559

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

16560

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

16563

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

16564

\[ {}6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

16565

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16566

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

16567

\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

16568

\[ {}2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

16569

\[ {}15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

16570

\[ {}20 y^{\prime \prime }+y^{\prime }-y = 0 \]

16571

\[ {}12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

16589

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

16590

\[ {}y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]

16591

\[ {}y^{\prime \prime }+16 y = 0 \]

16592

\[ {}y^{\prime \prime }+25 y = 0 \]

16604

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

16605

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

16623

\[ {}4 x^{\prime \prime }+9 x = 0 \]

16624

\[ {}9 x^{\prime \prime }+4 x = 0 \]

16625

\[ {}x^{\prime \prime }+64 x = 0 \]

16626

\[ {}x^{\prime \prime }+100 x = 0 \]

16627

\[ {}x^{\prime \prime }+x = 0 \]

16628

\[ {}x^{\prime \prime }+4 x = 0 \]

16629

\[ {}x^{\prime \prime }+16 x = 0 \]

16630

\[ {}x^{\prime \prime }+256 x = 0 \]

16631

\[ {}x^{\prime \prime }+9 x = 0 \]

16632

\[ {}10 x^{\prime \prime }+\frac {x}{10} = 0 \]

16633

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

16634

\[ {}\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]

16635

\[ {}\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]

16636

\[ {}4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]

16637

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]

16638

\[ {}x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]

16660

\[ {}x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]

16661

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]

16911

\[ {}y^{\prime \prime }+y = 0 \]

16952

\[ {}y^{\prime \prime }-y = 0 \]

16953

\[ {}3 y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

16955

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16956

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

16958

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

16960

\[ {}4 y^{\prime \prime }-8 y^{\prime }+5 y = 0 \]

16963

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

16964

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]

17170

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]

17171

\[ {}x^{\prime \prime }+2 x^{\prime }+6 x = 0 \]

17172

\[ {}x^{\prime \prime }+2 x^{\prime }+x = 0 \]

17180

\[ {}y^{\prime \prime }+\lambda y = 0 \]

17181

\[ {}y^{\prime \prime }+\lambda y = 0 \]

17182

\[ {}y^{\prime \prime }-y = 0 \]

17183

\[ {}y^{\prime \prime }+y = 0 \]

17185

\[ {}y^{\prime \prime }+y = 0 \]

17186

\[ {}y^{\prime \prime }-y = 0 \]

17187

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

17188

\[ {}y^{\prime \prime }+\alpha y^{\prime } = 0 \]

17191

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]

17192

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]

17288

\[ {}x^{\prime \prime } = 0 \]

17291

\[ {}x^{\prime \prime }+x^{\prime } = 0 \]

17292

\[ {}x^{\prime \prime }+x^{\prime } = 0 \]

17552

\[ {}y^{\prime \prime }+y = 0 \]

17553

\[ {}y^{\prime \prime }+9 y = 0 \]

17554

\[ {}y^{\prime \prime }+y^{\prime }+16 y = 0 \]

17555

\[ {}y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

17556

\[ {}y^{\prime \prime }-y^{\prime }+4 y = 0 \]

17567

\[ {}y^{\prime \prime }+4 y = 0 \]

17568

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

17571

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

17572

\[ {}a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

17583

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

17584

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

17585

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

17586

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

17587

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

17588

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

17589

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

17590

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

17591

\[ {}6 y^{\prime \prime }-y^{\prime }-y = 0 \]

17592

\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

17593

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 0 \]

17594

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]