4.6.7 Problems 601 to 671

Table 4.557: Second order non-linear ODE

#

ODE

Mathematica

Maple

Sympy

18622

\[ {} y^{\prime \prime } = \frac {1}{y^{2}} \]

18623

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

18624

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = 1 \]

18625

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }-1-{y^{\prime }}^{2} = 0 \]

18873

\[ {} y^{\prime \prime } y^{\prime }-x^{2} y y^{\prime } = x y^{2} \]

18874

\[ {} x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2}-3 y^{2} = 0 \]

18879

\[ {} y^{\prime \prime } = \frac {1}{\sqrt {a y}} \]

18880

\[ {} y^{\prime \prime }+\frac {a^{2}}{y^{2}} = 0 \]

18881

\[ {} y^{\prime \prime }-\frac {a^{2}}{y^{2}} = 0 \]

18883

\[ {} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

18884

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

18886

\[ {} y^{\prime \prime }-a {y^{\prime }}^{2} = 0 \]

18887

\[ {} {y^{\prime }}^{2}+y y^{\prime \prime } = 1 \]

18888

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

18889

\[ {} y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{3} = 0 \]

18893

\[ {} a^{2} y^{\prime \prime } y^{\prime } = x \]

18894

\[ {} a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

18903

\[ {} \left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime }+2 {y^{\prime }}^{2} \left (x +y\right )+x y^{\prime }+y = 0 \]

18908

\[ {} {y^{\prime }}^{2}-y y^{\prime \prime } = n \sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} \]

18910

\[ {} y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0 \]

18915

\[ {} y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

18921

\[ {} y^{3} y^{\prime \prime } = a \]

18923

\[ {} y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

18929

\[ {} a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2} \]

18954

\[ {} x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2} = 0 \]

18955

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

19278

\[ {} x y y^{\prime \prime }+x {y^{\prime }}^{2}+y y^{\prime } = 0 \]

19296

\[ {} y^{3} y^{\prime \prime } = a \]

19298

\[ {} y^{\prime \prime }+\frac {a^{2}}{y} = 0 \]

19299

\[ {} y^{\prime \prime } = y^{3}-y \]

19300

\[ {} y^{\prime \prime } = {\mathrm e}^{2 y} \]

19302

\[ {} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

19309

\[ {} x y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } = 0 \]

19314

\[ {} y^{\prime \prime }+y y^{\prime } = 0 \]

19315

\[ {} {y^{\prime }}^{2}+y y^{\prime \prime } = 1 \]

19316

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+y^{\prime } = 0 \]

19317

\[ {} y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{2} = 0 \]

19318

\[ {} y^{\prime \prime } = a {y^{\prime }}^{2} \]

19319

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

19320

\[ {} y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2} \]

19322

\[ {} a^{2} y^{\prime \prime } y^{\prime } = x \]

19324

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

19325

\[ {} a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

19326

\[ {} y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

19327

\[ {} a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2} \]

19328

\[ {} y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

19329

\[ {} y^{\prime } = x y^{\prime \prime }+\sqrt {1+{y^{\prime }}^{2}} \]

19336

\[ {} x y y^{\prime \prime }+x {y^{\prime }}^{2} = 3 y y^{\prime } \]

19337

\[ {} 2 x^{2} y y^{\prime \prime }+y^{2} = x^{2} {y^{\prime }}^{2} \]

19338

\[ {} x^{2} y^{\prime \prime } = \sqrt {m \,x^{2} {y^{\prime }}^{3}+n y^{2}} \]

19339

\[ {} x^{4} y^{\prime \prime } = \left (x^{3}+2 x y\right ) y^{\prime }-4 y^{2} \]

19340

\[ {} x^{4} y^{\prime \prime }-x^{3} y^{\prime } = x^{2} {y^{\prime }}^{2}-4 y^{2} \]

19341

\[ {} x^{2} y^{\prime \prime }+4 y^{2}-6 y = x^{4} {y^{\prime }}^{2} \]

19342

\[ {} y^{\prime \prime } = {\mathrm e}^{y} \]

19347

\[ {} y^{\prime \prime } = \frac {1}{\sqrt {a y}} \]

19349

\[ {} -a y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

19350

\[ {} \sin \left (y\right )^{3} y^{\prime \prime } = \cos \left (y\right ) \]

19354

\[ {} y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2} \]

19402

\[ {} x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2} = 0 \]

19511

\[ {} 2 x^{2} y y^{\prime \prime }+4 y^{2} = x^{2} {y^{\prime }}^{2}+2 x y y^{\prime } \]

19519

\[ {} 2 x^{2} \cos \left (y\right ) y^{\prime \prime }-2 x^{2} \sin \left (y\right ) {y^{\prime }}^{2}+x \cos \left (y\right ) y^{\prime }-\sin \left (y\right ) = \ln \left (x \right ) \]

19520

\[ {} x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2}-3 y^{2} = 0 \]

19521

\[ {} y+3 x y^{\prime }+2 y {y^{\prime }}^{2}+\left (x^{2}+2 y^{2} y^{\prime }\right ) y^{\prime \prime } = 0 \]

19522

\[ {} \left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime }+2 {y^{\prime }}^{2} \left (x +y\right )+x y^{\prime }+y = 0 \]

19526

\[ {} y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0 \]

19527

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

19528

\[ {} y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

19529

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

19530

\[ {} y^{\prime }-y y^{\prime \prime } = n \sqrt {{y^{\prime }}^{2}+a^{2} y^{\prime \prime }} \]

19533

\[ {} x^{4} y^{\prime \prime } = \left (y-x y^{\prime }\right )^{3} \]

19534

\[ {} x y^{\prime \prime }+2 y^{\prime } = x^{2} y^{\prime }-y^{2} \]