5.27.1 Problems 1 to 100

Table 5.1167: Second order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

11

\[ {}x^{\prime \prime } = 50 \]

12

\[ {}x^{\prime \prime } = -20 \]

13

\[ {}x^{\prime \prime } = 3 t \]

14

\[ {}x^{\prime \prime } = 2 t +1 \]

15

\[ {}x^{\prime \prime } = 4 \left (3+t \right )^{2} \]

16

\[ {}x^{\prime \prime } = \frac {1}{\sqrt {t +4}} \]

17

\[ {}x^{\prime \prime } = \frac {1}{\left (t +1\right )^{3}} \]

18

\[ {}x^{\prime \prime } = 50 \sin \left (5 t \right ) \]

257

\[ {}y^{\prime \prime }+y = 3 x \]

258

\[ {}y^{\prime \prime }-4 y = 12 \]

259

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 \]

260

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 2 x \]

261

\[ {}y^{\prime \prime }+2 y = 6 x +4 \]

322

\[ {}y^{\prime \prime }+16 y = {\mathrm e}^{3 x} \]

323

\[ {}y^{\prime \prime }-y^{\prime }+2 y = 3 x +4 \]

324

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 2 \sin \left (3 x \right ) \]

325

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 3 x \,{\mathrm e}^{x} \]

326

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )^{2} \]

327

\[ {}2 y^{\prime \prime }+4 y^{\prime }+7 y = x^{2} \]

328

\[ {}y^{\prime \prime }-4 y = \sinh \left (x \right ) \]

329

\[ {}y^{\prime \prime }-4 y = \cosh \left (2 x \right ) \]

330

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 1+x \,{\mathrm e}^{x} \]

331

\[ {}2 y^{\prime \prime }+9 y = 2 \cos \left (3 x \right )+3 \sin \left (3 x \right ) \]

334

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{x} \sin \left (x \right ) \]

337

\[ {}y^{\prime \prime }+9 y = 2 x^{2} {\mathrm e}^{3 x}+5 \]

338

\[ {}y^{\prime \prime }+y = \sin \left (x \right )+x \cos \left (x \right ) \]

342

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

344

\[ {}y^{\prime \prime }+4 y = 3 x \cos \left (2 x \right ) \]

346

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right ) \]

347

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = x \,{\mathrm e}^{3 x} \sin \left (3 x \right ) \]

351

\[ {}y^{\prime \prime }+4 y = 2 x \]

352

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x} \]

353

\[ {}y^{\prime \prime }+9 y = \sin \left (2 x \right ) \]

354

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]

355

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 1+x \]

358

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \sin \left (3 x \right ) \]

363

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \sin \left (3 x \right ) \]

364

\[ {}y^{\prime \prime }+9 y = \sin \left (x \right )^{4} \]

365

\[ {}y^{\prime \prime }+y = x \cos \left (x \right )^{3} \]

366

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \,{\mathrm e}^{x} \]

367

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 3 \,{\mathrm e}^{-2 x} \]

368

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x} \]

369

\[ {}y^{\prime \prime }-4 y = \sinh \left (2 x \right ) \]

370

\[ {}y^{\prime \prime }+4 y = \cos \left (3 x \right ) \]

371

\[ {}y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

372

\[ {}y^{\prime \prime }+9 y = 2 \sec \left (3 x \right ) \]

373

\[ {}y^{\prime \prime }+y = \csc \left (x \right )^{2} \]

374

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right )^{2} \]

375

\[ {}y^{\prime \prime }-4 y = x \,{\mathrm e}^{x} \]

382

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right ) \]

383

\[ {}x^{\prime \prime }+9 x = 10 \cos \left (2 t \right ) \]

384

\[ {}x^{\prime \prime }+4 x = 5 \sin \left (3 t \right ) \]

385

\[ {}x^{\prime \prime }+100 x = 225 \cos \left (5 t \right )+300 \sin \left (5 t \right ) \]

386

\[ {}x^{\prime \prime }+25 x = 90 \cos \left (4 t \right ) \]

387

\[ {}m x^{\prime \prime }+k x = F_{0} \cos \left (\omega t \right ) \]

388

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 10 \cos \left (3 t \right ) \]

389

\[ {}x^{\prime \prime }+3 x^{\prime }+5 x = -4 \cos \left (5 t \right ) \]

390

\[ {}2 x^{\prime \prime }+2 x^{\prime }+x = 3 \sin \left (10 t \right ) \]

391

\[ {}x^{\prime \prime }+3 x^{\prime }+3 x = 8 \cos \left (10 t \right )+6 \sin \left (10 t \right ) \]

392

\[ {}x^{\prime \prime }+4 x^{\prime }+5 x = 10 \cos \left (3 t \right ) \]

393

\[ {}x^{\prime \prime }+6 x^{\prime }+13 x = 10 \sin \left (5 t \right ) \]

394

\[ {}x^{\prime \prime }+2 x^{\prime }+26 x = 600 \cos \left (10 t \right ) \]

395

\[ {}x^{\prime \prime }+8 x^{\prime }+25 x = 200 \cos \left (t \right )+520 \sin \left (t \right ) \]

396

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 2 \cos \left (\omega t \right ) \]

397

\[ {}x^{\prime \prime }+4 x^{\prime }+5 x = 10 \cos \left (\omega t \right ) \]

398

\[ {}x^{\prime \prime }+6 x^{\prime }+45 x = 50 \cos \left (\omega t \right ) \]

399

\[ {}x^{\prime \prime }+10 x^{\prime }+650 x = 100 \cos \left (\omega t \right ) \]

534

\[ {}x^{\prime \prime }+x = \sin \left (2 t \right ) \]

535

\[ {}x^{\prime \prime }+4 x = \cos \left (t \right ) \]

536

\[ {}x^{\prime \prime }+x = \cos \left (3 t \right ) \]

537

\[ {}x^{\prime \prime }+9 x = 1 \]

538

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 1 \]

539

\[ {}x^{\prime \prime }+3 x^{\prime }+2 x = t \]

542

\[ {}x^{\prime \prime }-6 x^{\prime }+8 x = 2 \]

543

\[ {}x^{\prime \prime }-4 x = 3 t \]

544

\[ {}x^{\prime \prime }+4 x^{\prime }+8 x = {\mathrm e}^{-t} \]

551

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = t \,{\mathrm e}^{-t} \]

552

\[ {}x^{\prime \prime }+6 x^{\prime }+18 x = \cos \left (2 t \right ) \]

553

\[ {}x^{\prime \prime }+9 x = 6 \cos \left (3 t \right ) \]

554

\[ {}x^{\prime \prime }+\frac {2 x^{\prime }}{5}+\frac {226 x}{25} = 6 \,{\mathrm e}^{-\frac {t}{5}} \cos \left (3 t \right ) \]

561

\[ {}x^{\prime \prime }+4 x = f \left (t \right ) \]

562

\[ {}x^{\prime \prime }+2 x^{\prime }+x = f \left (t \right ) \]

563

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = f \left (t \right ) \]

564

\[ {}x^{\prime \prime }+4 x = \delta \left (t \right ) \]

565

\[ {}x^{\prime \prime }+4 x = \delta \left (t \right )+\delta \left (t -\pi \right ) \]

566

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 1+\delta \left (t -2\right ) \]

567

\[ {}x^{\prime \prime }+2 x^{\prime }+x = t +\delta \left (t \right ) \]

568

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 2 \delta \left (t -\pi \right ) \]

569

\[ {}x^{\prime \prime }+9 x = \delta \left (t -3 \pi \right )+\cos \left (3 t \right ) \]

570

\[ {}x^{\prime \prime }+4 x^{\prime }+5 x = \delta \left (t -\pi \right )+\delta \left (t -2 \pi \right ) \]

571

\[ {}x^{\prime \prime }+2 x^{\prime }+x = \delta \left (t \right )-\delta \left (t -2\right ) \]

572

\[ {}x^{\prime \prime }+4 x = f \left (t \right ) \]

573

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = f \left (t \right ) \]

574

\[ {}x^{\prime \prime }+6 x^{\prime }+8 x = f \left (t \right ) \]

575

\[ {}x^{\prime \prime }+4 x^{\prime }+8 x = f \left (t \right ) \]

838

\[ {}y^{\prime \prime }+y = 3 x \]

839

\[ {}y^{\prime \prime }-4 y = 12 \]

840

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 \]

841

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 2 x \]

842

\[ {}y^{\prime \prime }+2 y = 4 \]