5.1.37 Problems 3601 to 3700

Table 5.73: First order ode

#

ODE

Mathematica

Maple

7160

\[ {}y = \left (y \,{\mathrm e}^{y}-2 x \right ) y^{\prime } \]

7161

\[ {}\cos \left (x \right ) y^{\prime }+y \sin \left (x \right ) = 1 \]

7162

\[ {}\cos \left (x \right )^{2} \sin \left (x \right ) y^{\prime }+y \cos \left (x \right )^{3} = 1 \]

7163

\[ {}\left (1+x \right ) y^{\prime }+\left (x +2\right ) y = 2 x \,{\mathrm e}^{-x} \]

7164

\[ {}\left (x +2\right )^{2} y^{\prime } = 5-8 y-4 x y \]

7165

\[ {}r^{\prime }+r \sec \left (t \right ) = \cos \left (t \right ) \]

7166

\[ {}p^{\prime }+2 t p = p+4 t -2 \]

7167

\[ {}x y^{\prime }+\left (1+3 x \right ) y = {\mathrm e}^{-3 x} \]

7168

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 y = \left (1+x \right )^{2} \]

7169

\[ {}y^{\prime } = x +5 y \]

7170

\[ {}y^{\prime } = 2 x -3 y \]

7171

\[ {}x y^{\prime }+y = {\mathrm e}^{x} \]

7172

\[ {}y y^{\prime }-x = 2 y^{2} \]

7173

\[ {}L i^{\prime }+R i = E \]

7174

\[ {}T^{\prime } = k \left (T-T_{m} \right ) \]

7175

\[ {}x y^{\prime }+y = 4 x +1 \]

7176

\[ {}y^{\prime }+4 x y = x^{3} {\mathrm e}^{x^{2}} \]

7177

\[ {}\left (1+x \right ) y^{\prime }+y = \ln \left (x \right ) \]

7178

\[ {}x \left (1+x \right ) y^{\prime }+x y = 1 \]

7179

\[ {}y^{\prime }-y \sin \left (x \right ) = 2 \sin \left (x \right ) \]

7180

\[ {}y^{\prime }+y \tan \left (x \right ) = \cos \left (x \right )^{2} \]

7181

\[ {}y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le x \le 3 \\ 0 & 3<x \end {array}\right . \]

7182

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le x \le 1 \\ -1 & 1<x \end {array}\right . \]

7183

\[ {}y^{\prime }+2 x y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 0 & 1\le x \end {array}\right . \]

7184

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = \left \{\begin {array}{cc} x & 0\le x <1 \\ -x & 1\le x \end {array}\right . \]

7185

\[ {}y^{\prime }+\left (\left \{\begin {array}{cc} 2 & 0\le x \le 1 \\ -\frac {2}{x} & 1<x \end {array}\right .\right ) y = 4 x \]

7186

\[ {}y^{\prime }+\left (\left \{\begin {array}{cc} 1 & 0\le x \le 2 \\ 5 & 2<x \end {array}\right .\right ) y = 0 \]

7187

\[ {}y^{\prime }-2 x y = 1 \]

7188

\[ {}y^{\prime }-2 x y = -1 \]

7189

\[ {}y^{\prime }+y \,{\mathrm e}^{x} = 1 \]

7190

\[ {}x^{2} y^{\prime }-y = x^{3} \]

7191

\[ {}x^{3} y^{\prime }+2 x^{2} y = 10 \sin \left (x \right ) \]

7192

\[ {}y^{\prime }-\sin \left (x^{2}\right ) y = 0 \]

7193

\[ {}1 = \left (y^{2}+x \right ) y^{\prime } \]

7194

\[ {}y+\left (2 x +x y-3\right ) y^{\prime } = 0 \]

7195

\[ {}x y^{\prime }-4 y = x^{6} {\mathrm e}^{x} \]

7196

\[ {}x y^{\prime }-4 y = x^{6} {\mathrm e}^{x} \]

7197

\[ {}x y^{\prime }-4 y = x^{6} {\mathrm e}^{x} \]

7199

\[ {}e^{\prime } = -\frac {e}{r c} \]

7200

\[ {}2 x -1+\left (3 y+7\right ) y^{\prime } = 0 \]

7347

\[ {}y^{\prime }+\frac {26 y}{5} = \frac {97 \sin \left (2 t \right )}{5} \]

7348

\[ {}y^{\prime }+2 y = 0 \]

7359

\[ {}y^{\prime }-6 y = 0 \]

7382

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

7383

\[ {}y^{\prime } = \frac {x^{2}}{y \left (x^{3}+1\right )} \]

7384

\[ {}y^{\prime } = y \sin \left (x \right ) \]

7385

\[ {}x y^{\prime } = \sqrt {1-y^{2}} \]

7386

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

7387

\[ {}x y y^{\prime } = \sqrt {1+y^{2}} \]

7388

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y^{2} = 0 \]

7389

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]

7390

\[ {}x y^{\prime }+y = y^{2} \]

7391

\[ {}2 x^{2} y y^{\prime }+y^{2} = 2 \]

7392

\[ {}y^{\prime }-x y^{2} = 2 x y \]

7393

\[ {}\left (1+z^{\prime }\right ) {\mathrm e}^{-z} = 1 \]

7394

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{2 y-2} \]

7395

\[ {}{\mathrm e}^{x}-\left (1+{\mathrm e}^{x}\right ) y y^{\prime } = 0 \]

7396

\[ {}\frac {y}{x -1}+\frac {x y^{\prime }}{1+y} = 0 \]

7397

\[ {}x +2 x^{3}+\left (2 y^{3}+y\right ) y^{\prime } = 0 \]

7398

\[ {}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0 \]

7399

\[ {}\frac {1}{\sqrt {-x^{2}+1}}+\frac {y^{\prime }}{\sqrt {1-y^{2}}} = 0 \]

7400

\[ {}2 x \sqrt {1-y^{2}}+y y^{\prime } = 0 \]

7401

\[ {}y^{\prime } = \left (y-1\right ) \left (1+x \right ) \]

7402

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

7403

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}} \]

7404

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

7405

\[ {}z^{\prime } = 10^{x +z} \]

7406

\[ {}x^{\prime }+t = 1 \]

7407

\[ {}y^{\prime } = \cos \left (x -y\right ) \]

7408

\[ {}y^{\prime }-y = 2 x -3 \]

7409

\[ {}\left (x +2 y\right ) y^{\prime } = 1 \]

7410

\[ {}y^{\prime }+y = 2 x +1 \]

7411

\[ {}y^{\prime } = \cos \left (-y+x -1\right ) \]

7412

\[ {}y^{\prime }+\sin \left (x +y\right )^{2} = 0 \]

7413

\[ {}y^{\prime } = 2 \sqrt {2 x +y+1} \]

7414

\[ {}y^{\prime } = \left (x +y+1\right )^{2} \]

7415

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

7416

\[ {}\left (1+y^{2}\right ) \left ({\mathrm e}^{2 x}-{\mathrm e}^{y} y^{\prime }\right )-\left (1+y\right ) y^{\prime } = 0 \]

7417

\[ {}x -y+\left (x +y\right ) y^{\prime } = 0 \]

7418

\[ {}y-2 x y+x^{2} y^{\prime } = 0 \]

7419

\[ {}2 x y^{\prime } = y \left (2 x^{2}-y^{2}\right ) \]

7420

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

7421

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = 2 x y \]

7422

\[ {}x y^{\prime }-y = x \tan \left (\frac {y}{x}\right ) \]

7423

\[ {}x y^{\prime } = y-x \,{\mathrm e}^{\frac {y}{x}} \]

7424

\[ {}x y^{\prime }-y = \left (x +y\right ) \ln \left (\frac {x +y}{x}\right ) \]

7425

\[ {}x y^{\prime } = y \cos \left (\frac {y}{x}\right ) \]

7426

\[ {}y+\sqrt {x y}-x y^{\prime } = 0 \]

7427

\[ {}x y^{\prime }-\sqrt {x^{2}-y^{2}}-y = 0 \]

7428

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

7429

\[ {}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0 \]

7430

\[ {}x y^{\prime }-y = y y^{\prime } \]

7431

\[ {}y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

7432

\[ {}y^{2}+x y+x^{2} = x^{2} y^{\prime } \]

7433

\[ {}\frac {1}{x^{2}-x y+y^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \]

7434

\[ {}y^{\prime } = \frac {2 x y}{3 x^{2}-y^{2}} \]

7435

\[ {}y^{\prime } = \frac {x}{y}+\frac {y}{x} \]

7436

\[ {}x y^{\prime } = y+\sqrt {y^{2}-x^{2}} \]

7437

\[ {}y+\left (2 \sqrt {x y}-x \right ) y^{\prime } = 0 \]

7438

\[ {}x y^{\prime } = y \ln \left (\frac {y}{x}\right ) \]