|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+y = \frac {1}{x^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime }-8 x^{3} y = 4 x^{3} {\mathrm e}^{-x^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (-x^{2}+2\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (2 x^{3}-1\right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 x y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = x^{3}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }-2 n x \left (1+x \right ) y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} x^{4} y^{\prime \prime }+2 x^{3} \left (1+x \right ) y^{\prime }+n^{2} y = 0
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x y^{\prime \prime \prime }-y^{\prime \prime }\right )^{2} = {y^{\prime \prime \prime }}^{2}+1
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+x y^{\prime } = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (y^{\prime }-x y^{\prime \prime }\right )^{2} = 1+{y^{\prime \prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime }-{y^{\prime }}^{2}-y^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 y^{\prime \prime } = {\mathrm e}^{y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y y^{\prime \prime }+2 y^{\prime }-{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}-2 x +2\right ) y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime \prime }-y^{\prime \prime }-x y^{\prime }+y = -x^{2}+1
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x +2\right )^{2} y^{\prime \prime \prime }+\left (x +2\right ) y^{\prime \prime }+y^{\prime } = 1
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y = \cos \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 x^{3} y y^{\prime \prime \prime }+6 x^{3} y^{\prime } y^{\prime \prime }+18 x^{2} y y^{\prime \prime }+18 x^{2} {y^{\prime }}^{2}+36 x y y^{\prime }+6 y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{5} y^{\prime \prime }+\left (2 x^{4}-x \right ) y^{\prime }-\left (2 x^{3}-1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} \left (-x^{3}+1\right ) y^{\prime \prime }-x^{3} y^{\prime }-2 y = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime \prime }-5 x y^{\prime \prime }+\left (4 x^{4}+5\right ) y^{\prime }-8 x^{3} y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }+2 \tan \left (x \right ) {y^{\prime }}^{2} = 0
\]
|
✗ |
✓ |
✓ |
|
|
\[
{} x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{3} y^{\prime \prime }-\left (x y^{\prime }-y\right )^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right )-x^{2} y^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \sin \left (x \right )^{2} y^{\prime \prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{3}+1\right ) y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+18 x y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}-x \right ) y^{\prime \prime }+\left (4 x +2\right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+\frac {y^{\prime }}{x} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x \left (x +2 y\right ) y^{\prime \prime }+2 x {y^{\prime }}^{2}+4 \left (x +y\right ) y^{\prime }+2 y+x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 4 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } \sin \left (x \right )-\cos \left (x \right ) y^{\prime }+2 \sin \left (x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} t^{2} x^{\prime \prime }-6 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime }+t x^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \frac {x^{\prime }+t x^{\prime \prime }}{t} = -2
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime } = -\frac {x}{t^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime } = \frac {4 x}{t^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} x^{\prime \prime }+3 t x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} x^{\prime \prime }-7 t x^{\prime }+16 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} x^{\prime \prime }+3 t x^{\prime }-8 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} x^{\prime \prime }+t x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} x^{\prime \prime }-t x^{\prime }+2 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+t^{2} x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} x^{\prime \prime }-2 x = t^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+\frac {x^{\prime }}{t} = a
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+t x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-t x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-\frac {\left (t +2\right ) x^{\prime }}{t}+\frac {\left (t +2\right ) x}{t^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} x^{\prime \prime }+t x^{\prime }+\left (t^{2}-\frac {1}{4}\right ) x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 x y^{\prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (1+x \right )^{2} y^{\prime \prime }-3 \left (1+x \right ) y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}-x +1\right ) y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+\left (1+x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (2 x +1\right ) y^{\prime \prime }-4 \left (1+x \right ) y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{3}-x^{2}\right ) y^{\prime \prime }-\left (x^{3}+2 x^{2}-2 x \right ) y^{\prime }+\left (2 x^{2}+2 x -2\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }-6 x y^{\prime }+10 y = 3 x^{4}+6 x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 1
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = \left (x +2\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = x^{3}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (x -2\right ) y^{\prime \prime }-\left (x^{2}-2\right ) y^{\prime }+2 \left (x -1\right ) y = 3 x^{2} \left (x -2\right )^{2} {\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (2 x +1\right ) \left (1+x \right ) y^{\prime \prime }+2 x y^{\prime }-2 y = \left (2 x +1\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = \sin \left (x \right )^{3}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 4 x^{2} y^{\prime \prime }-4 x y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-6 x y^{\prime }+18 y = 0
\]
|
✓ |
✓ |
✓ |
|