|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 4 x -6
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 2 x \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 4 \sin \left (\ln \left (x \right )\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-2 y = 4 x -8
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = -6 x^{3}+4 x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 10 x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-6 y = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x +2\right )^{2} y^{\prime \prime }-\left (x +2\right ) y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} t x^{\prime \prime }-2 x^{\prime }+9 t^{5} x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{3} x^{\prime \prime \prime }-3 t^{2} x^{\prime \prime }+6 t x^{\prime }-6 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (t^{3}-2 t^{2}\right ) x^{\prime \prime }-\left (t^{3}+2 t^{2}-6 t \right ) x^{\prime }+\left (3 t^{2}-6\right ) x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{3} x^{\prime \prime \prime }-\left (t +3\right ) t^{2} x^{\prime \prime }+2 t \left (t +3\right ) x^{\prime }-2 \left (t +3\right ) x = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} t^{2} x^{\prime \prime }+3 t x^{\prime }+3 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (1+2 t \right ) x^{\prime \prime }+t^{3} x^{\prime }+x = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} t^{2} x^{\prime \prime }+\left (2 t^{3}+7 t \right ) x^{\prime }+\left (8 t^{2}+8\right ) x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{3} x^{\prime \prime }-\left (t^{3}+2 t^{2}-t \right ) x^{\prime }+\left (t^{2}+t -1\right ) x = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} t^{3} x^{\prime \prime }+3 t^{2} x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \sin \left (t \right ) x^{\prime \prime }+\cos \left (t \right ) x^{\prime }+2 x = 0
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} \frac {\left (t +1\right ) x^{\prime \prime }}{t}-\frac {x^{\prime }}{t^{2}}+\frac {x}{t^{3}} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} x^{\prime \prime }+t x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (t^{4}+t^{2}\right ) x^{\prime \prime }+2 t^{3} x^{\prime }+3 x = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{\prime \prime }-\tan \left (t \right ) x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} f \left (t \right ) x^{\prime \prime }+g \left (t \right ) x = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x^{\prime \prime }+\left (t +1\right ) x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+x y^{\prime \prime }+\frac {\lambda y}{x} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+x y^{\prime \prime }+\frac {\lambda y}{x} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime }+\frac {\lambda y}{x^{2}+1} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} -\frac {6 y^{\prime } x}{\left (3 x^{2}+1\right )^{2}}+\frac {y^{\prime \prime }}{3 x^{2}+1}+\lambda \left (3 x^{2}+1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{\prime \prime }+x^{4} x^{\prime }-x^{\prime }+x = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x^{\prime \prime }+x^{\prime }+{x^{\prime }}^{3}+x = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x^{\prime \prime }+\left (x^{4}+x^{2}\right ) x^{\prime }+x^{3}+x = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x^{\prime \prime }+\left (5 x^{4}-6 x^{2}\right ) x^{\prime }+x^{3} = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x^{\prime \prime }+\left (x^{2}+1\right ) x^{\prime }+x^{3} = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} t^{2} y^{\prime \prime }-\left (t^{2}+2 t \right ) y^{\prime }+\left (t +2\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (t \cos \left (t \right )-\sin \left (t \right )\right ) x^{\prime \prime }-x^{\prime } t \sin \left (t \right )-x \sin \left (t \right ) = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \left (-t^{2}+t \right ) x^{\prime \prime }+\left (-t^{2}+2\right ) x^{\prime }+\left (-t +2\right ) x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \tan \left (t \right ) x^{\prime \prime }-3 x^{\prime }+\left (\tan \left (t \right )+3 \cot \left (t \right )\right ) x = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} t^{2} x^{\prime \prime }-2 x = t^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (\tan \left (x \right )^{2}-1\right ) y^{\prime \prime }-4 \tan \left (x \right )^{3} y^{\prime }+2 y \sec \left (x \right )^{4} = \left (\tan \left (x \right )^{2}-1\right ) \left (1-2 \sin \left (x \right )^{2}\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 4 x^{2} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} x^{\prime \prime }-5 t x^{\prime }+10 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} x^{\prime \prime }+t x^{\prime }-x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} z^{\prime \prime }+3 x z^{\prime }+4 z = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-x y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 4 t^{2} x^{\prime \prime }+8 t x^{\prime }+5 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x^{2} z^{\prime \prime }+5 x z^{\prime }-z = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} x^{\prime \prime }+3 t x^{\prime }+13 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 2
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+\frac {2 {y^{\prime }}^{2}}{1-y} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} x^{\prime \prime }+1 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime \prime \prime }}^{2}+{y^{\prime \prime }}^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-\frac {1}{25}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+{y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = 3 \sqrt {y}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = \frac {y y^{\prime }}{\sqrt {x^{2}+1}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}+{y^{\prime \prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}-1\right ) y^{\prime \prime }-6 y = 1
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} m x^{\prime \prime } = f \left (x\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} m x^{\prime \prime } = f \left (x^{\prime }\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 2 \cos \left (\ln \left (1+x \right )\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{3} y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y y^{\prime \prime }-x {y^{\prime }}^{2}-y y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 6 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime } = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = 2 y^{3}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+x^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime \prime }+x y = \sin \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+y y^{\prime } = 1
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 1
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime \prime }+x y = \cosh \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime \prime }+x y = \cosh \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 y^{\prime \prime }+3 y^{\prime }+4 x^{2} y = 1
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }-y = \sin \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }+x y^{\prime \prime }-y^{2} = \sin \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \sin \left (y^{\prime \prime }\right )+y y^{\prime \prime \prime \prime } = 1
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime } = x y
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime \prime \prime }}^{2}+\sqrt {y} = \sin \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right ) = x^{2}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cot \left (x \right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime }+2 x^{2} y^{\prime }+\sin \left (x \right ) y = \sinh \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime } \sin \left (x \right )+x y^{\prime }+7 y = 1
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }-\left (x -1\right ) y^{\prime }+x^{2} y = \tan \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|