6.86 Problems 8501 to 8600

Table 6.171: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

8501

\[ {} \left (x^{2}+2\right ) y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

8502

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

8503

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

8504

\[ {} \left (1+x \right ) y^{\prime \prime }-\left (2-x \right ) y^{\prime }+y = 0 \]

8505

\[ {} y^{\prime \prime }-2 x y^{\prime }+8 y = 0 \]

8506

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

8507

\[ {} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

8508

\[ {} y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }-y = 0 \]

8509

\[ {} y+x y^{\prime }+y^{\prime \prime } = 0 \]

8510

\[ {} x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y = 0 \]

8511

\[ {} x \left (x +3\right )^{2} y^{\prime \prime }-y = 0 \]

8512

\[ {} \left (x^{2}-9\right )^{2} y^{\prime \prime }+\left (x +3\right ) y^{\prime }+2 y = 0 \]

8513

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{x}+\frac {y}{\left (x -1\right )^{3}} = 0 \]

8514

\[ {} \left (x^{3}+4 x \right ) y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

8515

\[ {} x^{2} \left (x -5\right )^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}-25\right ) y = 0 \]

8516

\[ {} \left (x^{2}+x -6\right ) y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (x -2\right ) y = 0 \]

8517

\[ {} x \left (x^{2}+1\right )^{2} y^{\prime \prime }+y = 0 \]

8518

\[ {} x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (x +5\right ) y = 0 \]

8519

\[ {} \left (x^{3}-2 x^{2}+3 x \right )^{2} y^{\prime \prime }+x \left (x -3\right )^{2} y^{\prime }-\left (1+x \right ) y = 0 \]

8520

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+5 y^{\prime } \left (1+x \right )+\left (x^{2}-x \right ) y = 0 \]

8521

\[ {} x y^{\prime \prime }+\left (x +3\right ) y^{\prime }+7 x^{2} y = 0 \]

8522

\[ {} x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3} = 0 \]

8523

\[ {} x y^{\prime \prime }+y^{\prime }+10 y = 0 \]

8524

\[ {} 2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

8525

\[ {} 2 x y^{\prime \prime }+5 y^{\prime }+x y = 0 \]

8526

\[ {} 4 x y^{\prime \prime }+\frac {y^{\prime }}{2}+y = 0 \]

8527

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

8528

\[ {} 3 x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

8529

\[ {} x^{2} y^{\prime \prime }-\left (x -\frac {2}{9}\right ) y = 0 \]

8530

\[ {} 2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y = 0 \]

8531

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {4}{9}\right ) y = 0 \]

8532

\[ {} 9 x^{2} y^{\prime \prime }+9 x^{2} y^{\prime }+2 y = 0 \]

8533

\[ {} 2 x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (2 x -1\right ) y = 0 \]

8534

\[ {} -x y+2 y^{\prime }+x y^{\prime \prime } = 0 \]

8535

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

8536

\[ {} x y^{\prime \prime }-x y^{\prime }+y = 0 \]

8537

\[ {} y^{\prime \prime }+\frac {3 y^{\prime }}{x}-2 y = 0 \]

8538

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = 0 \]

8539

\[ {} x y^{\prime \prime }+y^{\prime }+y = 0 \]

8540

\[ {} x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \]

8541

\[ {} x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

8542

\[ {} x^{4} y^{\prime \prime }+\lambda y = 0 \]

8543

\[ {} x^{3} y^{\prime \prime }+y = 0 \]

8544

\[ {} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

8545

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

8546

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y \left (x^{2}-1\right ) = 0 \]

8547

\[ {} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-25\right ) y = 0 \]

8548

\[ {} 16 x^{2} y^{\prime \prime }+16 x y^{\prime }+\left (16 x^{2}-1\right ) y = 0 \]

8549

\[ {} x y^{\prime \prime }+y^{\prime }+x y = 0 \]

8550

\[ {} y^{\prime }+x y^{\prime \prime }+\left (x -\frac {4}{x}\right ) y = 0 \]

8551

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-4\right ) y = 0 \]

8552

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

8553

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \]

8554

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-64\right ) y = 0 \]

8555

\[ {} x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

8556

\[ {} x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

8557

\[ {} x y^{\prime \prime }-y^{\prime }+x y = 0 \]

8558

\[ {} x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

8559

\[ {} x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

8560

\[ {} 4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0 \]

8561

\[ {} x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

8562

\[ {} 9 x^{2} y^{\prime \prime }+9 x y^{\prime }+\left (x^{6}-36\right ) y = 0 \]

8563

\[ {} y^{\prime \prime }-x^{2} y = 0 \]

8564

\[ {} x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0 \]

8565

\[ {} y^{\prime \prime }+y = 0 \]

8566

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

8567

\[ {} 16 x^{2} y^{\prime \prime }+32 x y^{\prime }+\left (x^{4}-12\right ) y = 0 \]

8568

\[ {} 4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (16 x^{4}+3\right ) y = 0 \]

8569

\[ {} 2 x y^{\prime \prime }+y^{\prime }+y = 0 \]

8570

\[ {} y^{\prime \prime }-x y^{\prime }-y = 0 \]

8571

\[ {} \left (x -1\right ) y^{\prime \prime }+3 y = 0 \]

8572

\[ {} x y-x^{2} y^{\prime }+y^{\prime \prime } = 0 \]

8573

\[ {} x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

8574

\[ {} y^{\prime \prime } \cos \left (x \right )+y = 0 \]

8575

\[ {} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

8576

\[ {} \left (x +2\right ) y^{\prime \prime }+3 y = 0 \]

8577

\[ {} y^{\prime } \left (1+x \right ) = y \]

8578

\[ {} y^{\prime } = -2 x y \]

8579

\[ {} x y^{\prime }-3 y = k \]

8580

\[ {} y^{\prime \prime }+y = 0 \]

8581

\[ {} x y-y^{\prime }+y^{\prime \prime } = 0 \]

8582

\[ {} y^{\prime \prime }-y^{\prime }+x^{2} y = 0 \]

8583

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

8584

\[ {} y^{\prime \prime }+\left (x^{2}+1\right ) y = 0 \]

8585

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

8586

\[ {} y^{\prime }+4 y = 1 \]

8587

\[ {} y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]

8588

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+30 y = 0 \]

8589

\[ {} \left (x -2\right ) y^{\prime } = x y \]

8590

\[ {} \left (x -2\right )^{2} y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = 0 \]

8591

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

8592

\[ {} y+x y^{\prime \prime } = 0 \]

8593

\[ {} x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

8594

\[ {} x y^{\prime \prime }+2 x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

8595

\[ {} y^{\prime \prime }+\left (x -1\right ) y = 0 \]

8596

\[ {} x y^{\prime \prime }+y^{\prime }+x y = 0 \]

8597

\[ {} 2 x \left (x -1\right ) y^{\prime \prime }-y^{\prime } \left (1+x \right )+y = 0 \]

8598

\[ {} x y^{\prime \prime }+2 y^{\prime }+4 x y = 0 \]

8599

\[ {} x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = 0 \]

8600

\[ {} x^{2} y^{\prime \prime }+6 x y^{\prime }+\left (4 x^{2}+6\right ) y = 0 \]