6.98 Problems 9701 to 9800

Table 6.195: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

9701

\[ {} [x^{\prime }\left (t \right ) = 12 x \left (t \right )-9 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )] \]

9702

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )-z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+z \left (t \right )] \]

9703

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )+4 z \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right )+3 z \left (t \right )] \]

9704

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = 2 y \left (t \right )+5 z \left (t \right )] \]

9705

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 3 y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = -y \left (t \right )+z \left (t \right )] \]

9706

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right )-z \left (t \right ), z^{\prime }\left (t \right ) = y \left (t \right )] \]

9707

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 4 y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = 4 z \left (t \right )] \]

9708

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+6 y \left (t \right )] \]

9709

\[ {} [x^{\prime }\left (t \right ) = z \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )] \]

9710

\[ {} [x^{\prime }\left (t \right ) = 6 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+2 y \left (t \right )] \]

9711

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \]

9712

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )] \]

9713

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )+5 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+6 y \left (t \right )] \]

9714

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )-4 y \left (t \right )] \]

9715

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-8 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )] \]

9716

\[ {} [x^{\prime }\left (t \right ) = z \left (t \right ), y^{\prime }\left (t \right ) = -z \left (t \right ), z^{\prime }\left (t \right ) = y \left (t \right )] \]

9717

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )+2 z \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+6 z \left (t \right ), z^{\prime }\left (t \right ) = -4 x \left (t \right )-3 z \left (t \right )] \]

9718

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-12 y \left (t \right )-14 z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )-3 z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-2 z \left (t \right )] \]

9719

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )-7, y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )+5] \]

9720

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )+9 y \left (t \right )+2, y^{\prime }\left (t \right ) = -x \left (t \right )+11 y \left (t \right )+6] \]

9721

\[ {} x^{2} {y^{\prime }}^{2}-y^{2} = 0 \]

9722

\[ {} x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

9723

\[ {} x^{2} {y^{\prime }}^{2}-5 y y^{\prime } x +6 y^{2} = 0 \]

9724

\[ {} x^{2} {y^{\prime }}^{2}+x y^{\prime }-y^{2}-y = 0 \]

9725

\[ {} x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

9726

\[ {} {y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

9727

\[ {} x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0 \]

9728

\[ {} {y^{\prime }}^{2}-x^{2} y^{2} = 0 \]

9729

\[ {} \left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

9730

\[ {} y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

9731

\[ {} {y^{\prime }}^{2}-y^{\prime } x y \left (x +y\right )+x^{3} y^{3} = 0 \]

9732

\[ {} \left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0 \]

9733

\[ {} \left (x -y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

9734

\[ {} x y {y^{\prime }}^{2}+\left (x y^{2}-1\right ) y^{\prime }-y = 0 \]

9735

\[ {} \left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2} = 4 x^{2} y^{2} \]

9736

\[ {} \left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+x y-x^{2}\right ) y^{\prime }+y \left (y-x \right ) = 0 \]

9737

\[ {} x y \left (x^{2}+y^{2}\right ) \left ({y^{\prime }}^{2}-1\right ) = y^{\prime } \left (x^{4}+x^{2} y^{2}+y^{4}\right ) \]

9738

\[ {} x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

9739

\[ {} x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

9740

\[ {} 4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

9741

\[ {} 3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

9742

\[ {} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

9743

\[ {} {y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

9744

\[ {} {y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]

9745

\[ {} 4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

9746

\[ {} 4 y^{3} {y^{\prime }}^{2}+4 x y^{\prime }+y = 0 \]

9747

\[ {} {y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0 \]

9748

\[ {} y^{4} {y^{\prime }}^{3}-6 x y^{\prime }+2 y = 0 \]

9749

\[ {} {y^{\prime }}^{2}+x^{3} y^{\prime }-2 x^{2} y = 0 \]

9750

\[ {} {y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]

9751

\[ {} 2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4} = 0 \]

9752

\[ {} {y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

9753

\[ {} y = x y^{\prime }+k {y^{\prime }}^{2} \]

9754

\[ {} x^{8} {y^{\prime }}^{2}+3 x y^{\prime }+9 y = 0 \]

9755

\[ {} x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4 = 0 \]

9756

\[ {} 4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

9757

\[ {} 3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

9758

\[ {} x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0 \]

9759

\[ {} y^{\prime } \left (x y^{\prime }-y+k \right )+a = 0 \]

9760

\[ {} x^{6} {y^{\prime }}^{3}-3 x y^{\prime }-3 y = 0 \]

9761

\[ {} y = x^{6} {y^{\prime }}^{3}-x y^{\prime } \]

9762

\[ {} {y^{\prime }}^{4} x -2 {y^{\prime }}^{3} y+12 x^{3} = 0 \]

9763

\[ {} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]

9764

\[ {} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

9765

\[ {} 2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0 \]

9766

\[ {} 2 {y^{\prime }}^{2}+x y^{\prime }-2 y = 0 \]

9767

\[ {} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

9768

\[ {} 4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0 \]

9769

\[ {} {y^{\prime }}^{3}-x y^{\prime }+2 y = 0 \]

9770

\[ {} 5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

9771

\[ {} 2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0 \]

9772

\[ {} 5 {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

9773

\[ {} {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

9774

\[ {} y = x y^{\prime }+x^{3} {y^{\prime }}^{2} \]

9775

\[ {} y^{\prime \prime } = x {y^{\prime }}^{3} \]

9776

\[ {} x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \]

9777

\[ {} x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \]

9778

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

9779

\[ {} y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

9780

\[ {} \left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

9781

\[ {} 2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

9782

\[ {} x y^{\prime \prime } = y^{\prime }+x^{5} \]

9783

\[ {} x y^{\prime \prime }+y^{\prime }+x = 0 \]

9784

\[ {} y^{\prime \prime } = 2 {y^{\prime }}^{3} y \]

9785

\[ {} -{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

9786

\[ {} y^{\prime \prime }+\beta ^{2} y = 0 \]

9787

\[ {} {y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

9788

\[ {} y^{\prime \prime } \cos \left (x \right ) = y^{\prime } \]

9789

\[ {} y^{\prime \prime } = x {y^{\prime }}^{2} \]

9790

\[ {} y^{\prime \prime } = x {y^{\prime }}^{2} \]

9791

\[ {} y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

9792

\[ {} y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

9793

\[ {} 2 y^{\prime \prime } = \sin \left (2 y\right ) \]

9794

\[ {} 2 y^{\prime \prime } = \sin \left (2 y\right ) \]

9795

\[ {} -x^{2} y^{\prime }+x^{3} y^{\prime \prime } = -x^{2}+3 \]

9796

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \]

9797

\[ {} y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2} \]

9798

\[ {} 2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right ) \]

9799

\[ {} {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = 0 \]

9800

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]