6.102 Problems 10101 to 10200

Table 6.203: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

10101

\[ {} y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0 \]

10102

\[ {} y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0 \]

10103

\[ {} y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0 \]

10104

\[ {} y^{\prime \prime }-y^{\prime }-x y-x = 0 \]

10105

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0 \]

10106

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

10107

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

10108

\[ {} y^{\prime \prime }-2 y^{\prime }-x y-x^{2}-2 = 0 \]

10109

\[ {} y^{\prime \prime }-4 y^{\prime }-x y-x^{2}-4 = 0 \]

10110

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{3}+1 = 0 \]

10111

\[ {} y^{\prime \prime }-2 y^{\prime }-x y-x^{3}-x^{2} = 0 \]

10112

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{3}+2 = 0 \]

10113

\[ {} y^{\prime \prime }-2 y^{\prime }-x y-x^{3}+2 = 0 \]

10114

\[ {} y^{\prime \prime }-4 y^{\prime }-x y-x^{3}+2 = 0 \]

10115

\[ {} y^{\prime \prime }-6 y^{\prime }-x y-x^{3}+2 = 0 \]

10116

\[ {} y^{\prime \prime }-8 y^{\prime }-x y-x^{3}+2 = 0 \]

10117

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{4}+3 = 0 \]

10118

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{3} = 0 \]

10119

\[ {} y^{\prime \prime }-x y-x^{3}+2 = 0 \]

10120

\[ {} y^{\prime \prime }-x y-x^{6}+64 = 0 \]

10121

\[ {} y^{\prime \prime }-x y-x = 0 \]

10122

\[ {} y^{\prime \prime }-x y-x^{2} = 0 \]

10123

\[ {} y^{\prime \prime }-x y-x^{3} = 0 \]

10124

\[ {} y^{\prime \prime }-x y-x^{6}-x^{3}+42 = 0 \]

10125

\[ {} y^{\prime \prime }-x^{2} y-x^{2} = 0 \]

10126

\[ {} y^{\prime \prime }-x^{2} y-x^{3} = 0 \]

10127

\[ {} y^{\prime \prime }-x^{2} y-x^{4} = 0 \]

10128

\[ {} y^{\prime \prime }-x^{2} y-x^{4}+2 = 0 \]

10129

\[ {} y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0 \]

10130

\[ {} y^{\prime \prime }-x^{3} y-x^{3} = 0 \]

10131

\[ {} y^{\prime \prime }-x^{3} y-x^{4} = 0 \]

10132

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0 \]

10133

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0 \]

10134

\[ {} y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

10135

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-x y-x^{2} = 0 \]

10136

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2} = 0 \]

10137

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2} = 0 \]

10138

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{x}-x y-x^{2}-\frac {1}{x} = 0 \]

10139

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \]

10140

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x} = 0 \]

10141

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0 \]

10142

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

10143

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0 \]

10144

\[ {} y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

10145

\[ {} y^{\prime \prime }+c y^{\prime }+k y = 0 \]

10146

\[ {} w^{\prime } = -\frac {1}{2}-\frac {\sqrt {1-12 w}}{2} \]

10147

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

10148

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

10149

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

10150

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

10151

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

10152

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

10153

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

10154

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

10155

\[ {} y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

10156

\[ {} y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

10157

\[ {} y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

10158

\[ {} y^{\prime \prime \prime }+y^{\prime }+y = x \]

10159

\[ {} x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1 \]

10160

\[ {} x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x \]

10161

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x \]

10162

\[ {} x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

10163

\[ {} x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = x \]

10164

\[ {} 5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+x y = 0 \]

10165

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

10166

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = x \]

10167

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1 \]

10168

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0 \]

10169

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

10170

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} \sin \left (y\right ) = 0 \]

10171

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

10172

\[ {} y^{\prime } = {\mathrm e}^{-\frac {y}{x}} \]

10173

\[ {} y^{\prime } = 2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x} \]

10174

\[ {} 4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (\ln \left (x \right )+1\right ) \]

10175

\[ {} v v^{\prime } = \frac {2 v^{2}}{r^{3}}+\frac {\lambda r}{3} \]

10176

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

10177

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1 \]

10178

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1+x \]

10179

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x \]

10180

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+x +1 \]

10181

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2} \]

10182

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+1 \]

10183

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{4} \]

10184

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right ) \]

10185

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right )+1 \]

10186

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x \sin \left (x \right ) \]

10187

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \cos \left (x \right )+\sin \left (x \right ) \]

10188

\[ {} x^{2} y^{\prime \prime }+\left (-1+\cos \left (x \right )\right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

10189

\[ {} \left (x -2\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1+x \right ) y = 0 \]

10190

\[ {} \left (x -2\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1+x \right ) y = 0 \]

10191

\[ {} \left (1+x \right ) \left (3 x -1\right ) y^{\prime \prime }+\cos \left (x \right ) y^{\prime }-3 x y = 0 \]

10192

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

10193

\[ {} 2 x^{2} y^{\prime \prime }+3 x y^{\prime }-x y = x^{2}+2 x \]

10194

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1 \]

10195

\[ {} 2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = 1 \]

10196

\[ {} y^{\prime \prime }+\left (x -6\right ) y = 0 \]

10197

\[ {} x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \]

10198

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+\cos \left (x \right ) \]

10199

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \cos \left (x \right ) \]

10200

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3}+\cos \left (x \right ) \]