6.103 Problems 10201 to 10300

Table 6.205: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

10201

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3} \cos \left (x \right ) \]

10202

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3} \cos \left (x \right )+\sin \left (x \right )^{2} \]

10203

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \ln \left (x \right ) \]

10204

\[ {} 2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

10205

\[ {} x^{2} \left (x +3\right ) y^{\prime \prime }+5 x \left (1+x \right ) y^{\prime }-\left (1-4 x \right ) y = 0 \]

10206

\[ {} x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \]

10207

\[ {} {y^{\prime }}^{2}+y^{2} = \sec \left (x \right )^{4} \]

10208

\[ {} \left (y-2 x y^{\prime }\right )^{2} = {y^{\prime }}^{3} \]

10209

\[ {} x^{2} y^{\prime \prime }+y = 0 \]

10210

\[ {} -y+y^{\prime }+x y^{\prime \prime } = 0 \]

10211

\[ {} 4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

10212

\[ {} -y+y^{\prime }+x y^{\prime \prime } = 0 \]

10213

\[ {} x y^{\prime \prime }+y^{\prime } \left (1+x \right )+2 y = 0 \]

10214

\[ {} x \left (x -1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

10215

\[ {} x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

10216

\[ {} 2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (1+x \right ) y = 0 \]

10217

\[ {} 2 x^{2} y^{\prime \prime }+x y^{\prime }+\left (x -5\right ) y = 0 \]

10218

\[ {} 2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = \sin \left (x \right ) \]

10219

\[ {} 2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = x \sin \left (x \right ) \]

10220

\[ {} 2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = \cos \left (x \right ) \sin \left (x \right ) \]

10221

\[ {} 2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = x^{3}+x \sin \left (x \right ) \]

10222

\[ {} y^{\prime \prime } \cos \left (x \right )+2 x y^{\prime }-x y = 0 \]

10223

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

10224

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-x y = 0 \]

10225

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

10226

\[ {} \left (x^{2}-x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

10227

\[ {} x^{2} y^{\prime \prime }+\left (x^{2}+6 x \right ) y^{\prime }+x y = 0 \]

10228

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}-8\right ) y = 0 \]

10229

\[ {} x^{2} y^{\prime \prime }-9 x y^{\prime }+25 y = 0 \]

10230

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }-\left (x^{2}+\frac {5}{4}\right ) y = 0 \]

10231

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

10232

\[ {} x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

10233

\[ {} 2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

10234

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

10235

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x^{4} y = 0 \]

10236

\[ {} x^{2} y^{\prime \prime }-x y = 0 \]

10237

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y = x \,{\mathrm e}^{x} \]

10238

\[ {} y^{\prime } = y \left (1-y^{2}\right ) \]

10239

\[ {} \frac {x y^{\prime \prime }}{1-x}+y = \frac {1}{1-x} \]

10240

\[ {} \frac {x y^{\prime \prime }}{1-x}+x y = 0 \]

10241

\[ {} \frac {x y^{\prime \prime }}{1-x}+y = \cos \left (x \right ) \]

10242

\[ {} \frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \]

10243

\[ {} y^{\prime \prime } = \left (x^{2}+3\right ) y \]

10244

\[ {} y^{\prime \prime }+\left (x -1\right ) y = 0 \]

10245

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+2 t +1, y^{\prime }\left (t \right ) = 5 x \left (t \right )+y \left (t \right )+3 t -1] \]

10246

\[ {} y^{\prime \prime }+20 y^{\prime }+500 y = 100000 \cos \left (100 x \right ) \]

10247

\[ {} y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y = 0 \]

10248

\[ {} y^{\prime \prime } = A y^{{2}/{3}} \]

10249

\[ {} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

10250

\[ {} y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y = 0 \]

10251

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

10252

\[ {} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

10253

\[ {} x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 6 x^{3} {\mathrm e}^{x} \]

10254

\[ {} y^{\prime }+y = \frac {1}{x} \]

10255

\[ {} y^{\prime }+y = \frac {1}{x^{2}} \]

10256

\[ {} x y^{\prime }+y = 0 \]

10257

\[ {} y^{\prime } = \frac {1}{x} \]

10258

\[ {} y^{\prime \prime } = \frac {1}{x} \]

10259

\[ {} y^{\prime \prime }+y^{\prime } = \frac {1}{x} \]

10260

\[ {} y^{\prime \prime }+y = \frac {1}{x} \]

10261

\[ {} y^{\prime \prime }+y^{\prime }+y = \frac {1}{x} \]

10262

\[ {} h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}} = b^{2} \]

10263

\[ {} y^{\prime \prime }+2 y^{\prime }-24 y = 16-\left (x +2\right ) {\mathrm e}^{4 x} \]

10264

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -2} \]

10265

\[ {} y^{\prime \prime }+y = {\mathrm e}^{a \cos \left (x \right )} \]

10266

\[ {} y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

10267

\[ {} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

10268

\[ {} x^{2} y^{\prime }+{\mathrm e}^{-y} = 0 \]

10269

\[ {} y^{\prime \prime }+{\mathrm e}^{y} = 0 \]

10270

\[ {} y^{\prime } = \frac {x y+3 x -2 y+6}{x y-3 x -2 y+6} \]

10271

\[ {} y^{\prime } = 0 \]

10272

\[ {} y^{\prime } = a \]

10273

\[ {} y^{\prime } = x \]

10274

\[ {} y^{\prime } = 1 \]

10275

\[ {} y^{\prime } = a x \]

10276

\[ {} y^{\prime } = a x y \]

10277

\[ {} y^{\prime } = a x +y \]

10278

\[ {} y^{\prime } = a x +b y \]

10279

\[ {} y^{\prime } = y \]

10280

\[ {} y^{\prime } = b y \]

10281

\[ {} y^{\prime } = a x +b y^{2} \]

10282

\[ {} c y^{\prime } = 0 \]

10283

\[ {} c y^{\prime } = a \]

10284

\[ {} c y^{\prime } = a x \]

10285

\[ {} c y^{\prime } = a x +y \]

10286

\[ {} c y^{\prime } = a x +b y \]

10287

\[ {} c y^{\prime } = y \]

10288

\[ {} c y^{\prime } = b y \]

10289

\[ {} c y^{\prime } = a x +b y^{2} \]

10290

\[ {} c y^{\prime } = \frac {a x +b y^{2}}{r} \]

10291

\[ {} c y^{\prime } = \frac {a x +b y^{2}}{r x} \]

10292

\[ {} c y^{\prime } = \frac {a x +b y^{2}}{r \,x^{2}} \]

10293

\[ {} c y^{\prime } = \frac {a x +b y^{2}}{y} \]

10294

\[ {} a \sin \left (x \right ) y x y^{\prime } = 0 \]

10295

\[ {} f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi = 0 \]

10296

\[ {} y^{\prime } = \sin \left (x \right )+y \]

10297

\[ {} y^{\prime } = \sin \left (x \right )+y^{2} \]

10298

\[ {} y^{\prime } = \cos \left (x \right )+\frac {y}{x} \]

10299

\[ {} y^{\prime } = \cos \left (x \right )+\frac {y^{2}}{x} \]

10300

\[ {} y^{\prime } = x +y+b y^{2} \]