6.105 Problems 10401 to 10500

Table 6.209: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

10401

\[ {} y^{\prime \prime }+y^{\prime }+y = \cos \left (x \right ) \]

10402

\[ {} y^{\prime \prime }+y^{\prime } = 1 \]

10403

\[ {} y^{\prime \prime }+y^{\prime } = x \]

10404

\[ {} y^{\prime \prime }+y^{\prime } = 1+x \]

10405

\[ {} y^{\prime \prime }+y^{\prime } = x^{2}+x +1 \]

10406

\[ {} y^{\prime \prime }+y^{\prime } = x^{3}+x^{2}+x +1 \]

10407

\[ {} y^{\prime \prime }+y^{\prime } = \sin \left (x \right ) \]

10408

\[ {} y^{\prime \prime }+y^{\prime } = \cos \left (x \right ) \]

10409

\[ {} y^{\prime \prime }+y = 1 \]

10410

\[ {} y^{\prime \prime }+y = x \]

10411

\[ {} y^{\prime \prime }+y = 1+x \]

10412

\[ {} y^{\prime \prime }+y = x^{2}+x +1 \]

10413

\[ {} y^{\prime \prime }+y = x^{3}+x^{2}+x +1 \]

10414

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

10415

\[ {} y^{\prime \prime }+y = \cos \left (x \right ) \]

10416

\[ {} y {y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

10417

\[ {} y {y^{\prime \prime }}^{2}+{y^{\prime }}^{3} = 0 \]

10418

\[ {} y^{2} {y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

10419

\[ {} y {y^{\prime \prime }}^{4}+{y^{\prime }}^{2} = 0 \]

10420

\[ {} y^{3} {y^{\prime \prime }}^{2}+y y^{\prime } = 0 \]

10421

\[ {} {y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

10422

\[ {} y {y^{\prime \prime }}^{3}+y^{3} y^{\prime } = 0 \]

10423

\[ {} y {y^{\prime \prime }}^{3}+y^{3} {y^{\prime }}^{5} = 0 \]

10424

\[ {} y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0 \]

10425

\[ {} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+y {y^{\prime }}^{2} = 0 \]

10426

\[ {} y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y^{2} {y^{\prime }}^{2} = 0 \]

10427

\[ {} y^{\prime \prime }+\left (\sin \left (x \right )+2 x \right ) y^{\prime }+\cos \left (y\right ) y {y^{\prime }}^{2} = 0 \]

10428

\[ {} y^{\prime } y^{\prime \prime }+y^{2} = 0 \]

10429

\[ {} y^{\prime } y^{\prime \prime }+y^{n} = 0 \]

10430

\[ {} y^{\prime } = \left (x +y\right )^{4} \]

10431

\[ {} y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (y^{2}+3\right ) {y^{\prime }}^{2} = 0 \]

10432

\[ {} y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0 \]

10433

\[ {} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+{y^{\prime }}^{2} = 0 \]

10434

\[ {} 3 y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+{y^{\prime }}^{2} \sin \left (y\right ) = 0 \]

10435

\[ {} 10 y^{\prime \prime }+x^{2} y^{\prime }+\frac {3 {y^{\prime }}^{2}}{y} = 0 \]

10436

\[ {} 10 y^{\prime \prime }+\left ({\mathrm e}^{x}+3 x \right ) y^{\prime }+\frac {3 \,{\mathrm e}^{y} {y^{\prime }}^{2}}{\sin \left (y\right )} = 0 \]

10437

\[ {} y^{\prime \prime }-\frac {2 y}{x^{2}} = x \,{\mathrm e}^{-\sqrt {x}} \]

10438

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = x \]

10439

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

10440

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-c^{2} y = 0 \]

10441

\[ {} x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

10442

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 2 x^{3}-x^{2} \]

10443

\[ {} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 \csc \left (x \right )^{2} y = 0 \]

10444

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } \left (1+x \right )+y = 4 \cos \left (\ln \left (1+x \right )\right ) \]

10445

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2} = 0 \]

10446

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 8 x^{3} \sin \left (x \right )^{2} \]

10447

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

10448

\[ {} y^{\prime \prime } \cos \left (x \right )+y^{\prime } \sin \left (x \right )-2 \cos \left (x \right )^{3} y = 2 \cos \left (x \right )^{5} \]

10449

\[ {} y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x} = 4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \]

10450

\[ {} x y-x^{2} y^{\prime }+y^{\prime \prime } = x^{1+m} \]

10451

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

10452

\[ {} \cos \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2} = 0 \]

10453

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (x \right ) \]

10454

\[ {} y^{\prime \prime }-2 b x y^{\prime }+y b^{2} x^{2} = x \]

10455

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}} \]

10456

\[ {} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = {\mathrm e}^{x^{2}} \sec \left (x \right ) \]

10457

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 \left (x^{2}+1\right ) y = 0 \]

10458

\[ {} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0 \]

10459

\[ {} x^{2} y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2} = 0 \]

10460

\[ {} -x y+2 y^{\prime }+x y^{\prime \prime } = 0 \]

10461

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

10462

\[ {} y^{\prime }+y \cot \left (x \right ) = 2 \cos \left (x \right ) \]

10463

\[ {} 2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0 \]

10464

\[ {} y^{\prime } = x -y^{2} \]

10465

\[ {} -2 y+5 y^{\prime }-3 y^{\prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = x \,{\mathrm e}^{x}+3 \,{\mathrm e}^{-2 x} \]

10466

\[ {} x^{2} y^{\prime \prime }-x \left (x +6\right ) y^{\prime }+10 y = 0 \]

10467

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0 \]

10468

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0 \]

10469

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

10470

\[ {} y^{\prime \prime \prime }-x y = 0 \]

10471

\[ {} y^{\prime } = y^{{1}/{3}} \]

10472

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

10473

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

10474

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

10475

\[ {} \left (x^{2}+3\right ) y^{\prime \prime }-7 x y^{\prime }+16 y = 0 \]

10476

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+8 x y^{\prime }+12 y = 0 \]

10477

\[ {} 3 y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

10478

\[ {} 5 y^{\prime \prime }-2 x y^{\prime }+10 y = 0 \]

10479

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

10480

\[ {} -2 y+2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

10481

\[ {} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

10482

\[ {} \left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y = 0 \]

10483

\[ {} \left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y = 0 \]

10484

\[ {} t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{2} y = 0 \]

10485

\[ {} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 0 \]

10486

\[ {} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = 0 \]

10487

\[ {} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

10488

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

10489

\[ {} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = 0 \]

10490

\[ {} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

10491

\[ {} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

10492

\[ {} 6 y-4 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

10493

\[ {} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = 0 \]

10494

\[ {} 2 y^{\prime \prime }+x y^{\prime }+3 y = 0 \]

10495

\[ {} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

10496

\[ {} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = 0 \]

10497

\[ {} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

10498

\[ {} \left (-x^{2}+4\right ) y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

10499

\[ {} 4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-16 x^{2}+3\right ) y = 0 \]

10500

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]