6.104 Problems 10301 to 10400

Table 6.207: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

10301

\[ {} x y^{\prime } = 0 \]

10302

\[ {} 5 y^{\prime } = 0 \]

10303

\[ {} {\mathrm e} y^{\prime } = 0 \]

10304

\[ {} \pi y^{\prime } = 0 \]

10305

\[ {} y^{\prime } \sin \left (x \right ) = 0 \]

10306

\[ {} f \left (x \right ) y^{\prime } = 0 \]

10307

\[ {} x y^{\prime } = 1 \]

10308

\[ {} x y^{\prime } = \sin \left (x \right ) \]

10309

\[ {} \left (x -1\right ) y^{\prime } = 0 \]

10310

\[ {} y y^{\prime } = 0 \]

10311

\[ {} y y^{\prime } x = 0 \]

10312

\[ {} x y \sin \left (x \right ) y^{\prime } = 0 \]

10313

\[ {} \pi y \sin \left (x \right ) y^{\prime } = 0 \]

10314

\[ {} x \sin \left (x \right ) y^{\prime } = 0 \]

10315

\[ {} x \sin \left (x \right ) {y^{\prime }}^{2} = 0 \]

10316

\[ {} y {y^{\prime }}^{2} = 0 \]

10317

\[ {} {y^{\prime }}^{n} = 0 \]

10318

\[ {} x {y^{\prime }}^{n} = 0 \]

10319

\[ {} {y^{\prime }}^{2} = x \]

10320

\[ {} {y^{\prime }}^{2} = x +y \]

10321

\[ {} {y^{\prime }}^{2} = \frac {y}{x} \]

10322

\[ {} {y^{\prime }}^{2} = \frac {y^{2}}{x} \]

10323

\[ {} {y^{\prime }}^{2} = \frac {y^{3}}{x} \]

10324

\[ {} {y^{\prime }}^{3} = \frac {y^{2}}{x} \]

10325

\[ {} {y^{\prime }}^{2} = \frac {1}{x y} \]

10326

\[ {} {y^{\prime }}^{2} = \frac {1}{x y^{3}} \]

10327

\[ {} {y^{\prime }}^{2} = \frac {1}{x^{2} y^{3}} \]

10328

\[ {} {y^{\prime }}^{4} = \frac {1}{x y^{3}} \]

10329

\[ {} {y^{\prime }}^{2} = \frac {1}{y^{4} x^{3}} \]

10330

\[ {} y^{\prime } = \sqrt {1+6 x +y} \]

10331

\[ {} y^{\prime } = \left (1+6 x +y\right )^{{1}/{3}} \]

10332

\[ {} y^{\prime } = \left (1+6 x +y\right )^{{1}/{4}} \]

10333

\[ {} y^{\prime } = \left (a +b x +y\right )^{4} \]

10334

\[ {} y^{\prime } = \left (\pi +x +7 y\right )^{{7}/{2}} \]

10335

\[ {} y^{\prime } = \left (a +b x +c y\right )^{6} \]

10336

\[ {} y^{\prime } = {\mathrm e}^{x +y} \]

10337

\[ {} y^{\prime } = 10+{\mathrm e}^{x +y} \]

10338

\[ {} y^{\prime } = 10 \,{\mathrm e}^{x +y}+x^{2} \]

10339

\[ {} y^{\prime } = x \,{\mathrm e}^{x +y}+\sin \left (x \right ) \]

10340

\[ {} y^{\prime } = 5 \,{\mathrm e}^{x^{2}+20 y}+\sin \left (x \right ) \]

10341

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = y \left (t \right )+t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t}] \]

10342

\[ {} [2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = y \left (t \right )+t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t}] \]

10343

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = y \left (t \right )+t +\sin \left (t \right )+\cos \left (t \right ), x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t}] \]

10344

\[ {} t y^{\prime }+y = t \]

10345

\[ {} y^{\prime }-t y = 0 \]

10346

\[ {} t y^{\prime }+y = 0 \]

10347

\[ {} t y^{\prime }+y = 0 \]

10348

\[ {} t y^{\prime }+y = 0 \]

10349

\[ {} t y^{\prime }+y = 0 \]

10350

\[ {} t y^{\prime }+y = 0 \]

10351

\[ {} t y^{\prime }+y = \sin \left (t \right ) \]

10352

\[ {} t y^{\prime }+y = t \]

10353

\[ {} t y^{\prime }+y = t \]

10354

\[ {} t^{2} y+y^{\prime } = 0 \]

10355

\[ {} \left (a t +1\right ) y^{\prime }+y = t \]

10356

\[ {} y^{\prime }+\left (a t +b t \right ) y = 0 \]

10357

\[ {} y^{\prime }+\left (a t +b t \right ) y = 0 \]

10358

\[ {} y^{\prime }+2 x y = x \]

10359

\[ {} y^{\prime }+y = \sin \left (x \right ) \]

10360

\[ {} x y^{\prime }+y = 0 \]

10361

\[ {} x y^{\prime }+y = x \]

10362

\[ {} x y^{\prime }+y = 1 \]

10363

\[ {} x y^{\prime }+y = \sin \left (x \right ) \]

10364

\[ {} x y^{\prime }+y = 2 x^{4}+x^{3}+x \]

10365

\[ {} x y^{\prime }+y = \frac {1}{x^{3}} \]

10366

\[ {} x y^{\prime }+2 x y = \sqrt {x} \]

10367

\[ {} y^{\prime }+\frac {y}{x} = 0 \]

10368

\[ {} \cos \left (x \right ) y^{\prime }+\frac {y}{x} = x \]

10369

\[ {} \cos \left (x \right ) y^{\prime }+\frac {y}{x} = x +\sin \left (x \right ) \]

10370

\[ {} x y^{\prime }+y = \tan \left (x \right ) \]

10371

\[ {} x y^{\prime }+y = \cos \left (x \right )+\sin \left (x \right ) \]

10372

\[ {} y^{\prime \prime } = 0 \]

10373

\[ {} {y^{\prime \prime }}^{2} = 0 \]

10374

\[ {} {y^{\prime \prime }}^{n} = 0 \]

10375

\[ {} a y^{\prime \prime } = 0 \]

10376

\[ {} a {y^{\prime \prime }}^{2} = 0 \]

10377

\[ {} a {y^{\prime \prime }}^{n} = 0 \]

10378

\[ {} y^{\prime \prime } = 1 \]

10379

\[ {} {y^{\prime \prime }}^{2} = 1 \]

10380

\[ {} y^{\prime \prime } = x \]

10381

\[ {} {y^{\prime \prime }}^{2} = x \]

10382

\[ {} {y^{\prime \prime }}^{3} = 0 \]

10383

\[ {} y^{\prime \prime }+y^{\prime } = 0 \]

10384

\[ {} {y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

10385

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

10386

\[ {} y^{\prime \prime }+y^{\prime } = 1 \]

10387

\[ {} {y^{\prime \prime }}^{2}+y^{\prime } = 1 \]

10388

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

10389

\[ {} y^{\prime \prime }+y^{\prime } = x \]

10390

\[ {} {y^{\prime \prime }}^{2}+y^{\prime } = x \]

10391

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = x \]

10392

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]

10393

\[ {} {y^{\prime \prime }}^{2}+y^{\prime }+y = 0 \]

10394

\[ {} y^{\prime \prime }+{y^{\prime }}^{2}+y = 0 \]

10395

\[ {} y^{\prime \prime }+y^{\prime }+y = 1 \]

10396

\[ {} y^{\prime \prime }+y^{\prime }+y = x \]

10397

\[ {} y^{\prime \prime }+y^{\prime }+y = 1+x \]

10398

\[ {} y^{\prime \prime }+y^{\prime }+y = x^{2}+x +1 \]

10399

\[ {} y^{\prime \prime }+y^{\prime }+y = x^{3}+x^{2}+x +1 \]

10400

\[ {} y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]