| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \pi y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sin \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} f \left (x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y \sin \left (x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \pi y \sin \left (x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \sin \left (x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \sin \left (x \right ) {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{n} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{n} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2} = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = x +y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = \frac {y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = \frac {y^{2}}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = \frac {y^{3}}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{3} = \frac {y^{2}}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = \frac {1}{x y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = \frac {1}{x y^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = \frac {1}{x^{2} y^{3}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{4} = \frac {1}{x y^{3}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2} = \frac {1}{y^{4} x^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {1+6 x +y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (1+6 x +y\right )^{{1}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (1+6 x +y\right )^{{1}/{4}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (a +b x +y\right )^{4}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \left (\pi +x +7 y\right )^{{7}/{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \left (a +b x +c y\right )^{6}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{x +y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 10+{\mathrm e}^{x +y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 10 \,{\mathrm e}^{x +y}+x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x \,{\mathrm e}^{x +y}+\sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 5 \,{\mathrm e}^{x^{2}+20 y}+\sin \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = y \left (t \right )+t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t}]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = y \left (t \right )+t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = y \left (t \right )+t +\sin \left (t \right )+\cos \left (t \right ), x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t}]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t y^{\prime }+y = t
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime }-t y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime }+y = 0
\]
|
✗ |
✓ |
✓ |
|
| \[
{} t y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime }+y = \sin \left (t \right )
\]
|
✓ |
✗ |
✓ |
|
| \[
{} t y^{\prime }+y = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime }+y = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (a t +1\right ) y^{\prime }+y = t
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+\left (a t +b t \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\left (a t +b t \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y^{\prime }+y = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+y = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+y = 2 x^{4}+x^{3}+x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+y = \frac {1}{x^{3}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+2 x y = \sqrt {x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+\frac {y}{x} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \cos \left (x \right ) y^{\prime }+\frac {y}{x} = x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \cos \left (x \right ) y^{\prime }+\frac {y}{x} = x +\sin \left (x \right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+y = \tan \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+y = \cos \left (x \right )+\sin \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{n} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a {y^{\prime \prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a {y^{\prime \prime }}^{n} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{2} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{2} = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{2}+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{2}+y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+{y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{2}+y^{\prime } = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+{y^{\prime }}^{2} = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{2}+y^{\prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+{y^{\prime }}^{2}+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = 1+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = x^{2}+x +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = x^{3}+x^{2}+x +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|