6.183 Problems 18201 to 18300

Table 6.365: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

18201

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

18202

\[ {} y^{\prime \prime \prime \prime } = x \]

18203

\[ {} y^{\prime \prime \prime } = x +\cos \left (x \right ) \]

18204

\[ {} y^{\prime \prime } \left (x +2\right )^{5} = 1 \]

18205

\[ {} y^{\prime \prime } = x \,{\mathrm e}^{x} \]

18206

\[ {} y^{\prime \prime } = 2 x \ln \left (x \right ) \]

18207

\[ {} x y^{\prime \prime } = y^{\prime } \]

18208

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

18209

\[ {} x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]

18210

\[ {} x y^{\prime \prime } = y^{\prime }+x^{2} \]

18211

\[ {} x \ln \left (x \right ) y^{\prime \prime } = y^{\prime } \]

18212

\[ {} x y = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

18213

\[ {} 2 y^{\prime \prime } = \frac {y^{\prime }}{x}+\frac {x^{2}}{y^{\prime }} \]

18214

\[ {} y^{\prime \prime \prime } = \sqrt {1-{y^{\prime \prime }}^{2}} \]

18215

\[ {} x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

18216

\[ {} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

18217

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \]

18218

\[ {} y^{\prime \prime } = \sqrt {1-{y^{\prime }}^{2}} \]

18219

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

18220

\[ {} y^{\prime \prime } = \sqrt {1+y^{\prime }} \]

18221

\[ {} y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right ) \]

18222

\[ {} y^{\prime \prime }+y^{\prime }+2 = 0 \]

18223

\[ {} y^{\prime \prime } = y^{\prime } \left (1+y^{\prime }\right ) \]

18224

\[ {} 3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

18225

\[ {} y^{\prime \prime \prime }+{y^{\prime \prime }}^{2} = 0 \]

18226

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \]

18227

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

18228

\[ {} 3 y^{\prime } y^{\prime \prime } = 2 y \]

18229

\[ {} 2 y^{\prime \prime } = 3 y^{2} \]

18230

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

18231

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2}+y^{\prime } \]

18232

\[ {} y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

18233

\[ {} 2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

18234

\[ {} y^{3} y^{\prime \prime } = -1 \]

18235

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} y^{\prime } \]

18236

\[ {} y^{\prime \prime } = {\mathrm e}^{2 y} \]

18237

\[ {} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2} \]

18238

\[ {} y^{\prime \prime \prime } = 3 y y^{\prime } \]

18239

\[ {} -y+y^{\prime \prime } = 0 \]

18240

\[ {} 3 y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

18241

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

18242

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 0 \]

18243

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

18244

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 0 \]

18245

\[ {} y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

18246

\[ {} y^{\left (6\right )}+2 y^{\left (5\right )}+y^{\prime \prime \prime \prime } = 0 \]

18247

\[ {} 4 y^{\prime \prime }-8 y^{\prime }+5 y = 0 \]

18248

\[ {} y^{\prime \prime \prime }-8 y = 0 \]

18249

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+10 y^{\prime \prime }+12 y^{\prime }+5 y = 0 \]

18250

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

18251

\[ {} y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]

18252

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime }-5 y = 0 \]

18253

\[ {} y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-6 y^{\prime }-4 y = 0 \]

18254

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]

18255

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime } = 0 \]

18256

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

18257

\[ {} y^{\left (5\right )} = 0 \]

18258

\[ {} y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

18259

\[ {} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime } = 0 \]

18260

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

18261

\[ {} y^{\prime \prime }+3 y^{\prime } = 3 \]

18262

\[ {} y^{\prime \prime }-7 y^{\prime } = \left (x -1\right )^{2} \]

18263

\[ {} y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x} \]

18264

\[ {} y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x} \]

18265

\[ {} y^{\prime \prime }-8 y^{\prime }+16 y = \left (1-x \right ) {\mathrm e}^{4 x} \]

18266

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 x} \]

18267

\[ {} 4 y^{\prime \prime }-3 y^{\prime } = x \,{\mathrm e}^{\frac {3 x}{4}} \]

18268

\[ {} y^{\prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{4 x} \]

18269

\[ {} y^{\prime \prime }+25 y = \cos \left (5 x \right ) \]

18270

\[ {} y^{\prime \prime }+y = \sin \left (x \right )-\cos \left (x \right ) \]

18271

\[ {} y^{\prime \prime }+16 y = \sin \left (4 x +\alpha \right ) \]

18272

\[ {} y^{\prime \prime }+4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )+\cos \left (2 x \right )\right ) \]

18273

\[ {} y^{\prime \prime }-4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )-\cos \left (2 x \right )\right ) \]

18274

\[ {} y^{\prime \prime }+6 y^{\prime }+13 y = {\mathrm e}^{-3 x} \cos \left (2 x \right ) \]

18275

\[ {} y^{\prime \prime }+k^{2} y = k \sin \left (k x +\alpha \right ) \]

18276

\[ {} y^{\prime \prime }+k^{2} y = k \]

18277

\[ {} y^{\prime \prime \prime }+y = x \]

18278

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 1 \]

18279

\[ {} y^{\prime }+y^{\prime \prime \prime } = 2 \]

18280

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 3 \]

18281

\[ {} y^{\prime \prime \prime \prime }-y = 1 \]

18282

\[ {} y^{\prime \prime \prime \prime }-y^{\prime } = 2 \]

18283

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime } = 3 \]

18284

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = 4 \]

18285

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 1 \]

18286

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{4 x} \]

18287

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{-x} \]

18288

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{-x} \]

18289

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

18290

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \cos \left (x \right ) \]

18291

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) x \]

18292

\[ {} y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = a \sin \left (n x +\alpha \right ) \]

18293

\[ {} y^{\prime \prime \prime \prime }-2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (n x +\alpha \right ) \]

18294

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (x \right ) \]

18295

\[ {} y-4 y^{\prime }+6 y^{\prime \prime }-4 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = {\mathrm e}^{x} \]

18296

\[ {} y-4 y^{\prime }+6 y^{\prime \prime }-4 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = x \,{\mathrm e}^{x} \]

18297

\[ {} y+2 y^{\prime }+y^{\prime \prime } = -2 \]

18298

\[ {} y^{\prime \prime }+2 y^{\prime } = -2 \]

18299

\[ {} y^{\prime \prime }+9 y = 9 \]

18300

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 1 \]