6.182 Problems 18101 to 18200

Table 6.363: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

18101

\[ {} 3 y^{2}-x +\left (2 y^{3}-6 x y\right ) y^{\prime } = 0 \]

18102

\[ {} x^{2}+y^{2}+1-2 y y^{\prime } x = 0 \]

18103

\[ {} x -x y+\left (y+x^{2}\right ) y^{\prime } = 0 \]

18104

\[ {} 4 {y^{\prime }}^{2}-9 x = 0 \]

18105

\[ {} {y^{\prime }}^{2}-2 y y^{\prime } = y^{2} \left ({\mathrm e}^{2 x}-1\right ) \]

18106

\[ {} {y^{\prime }}^{2}-2 x y^{\prime }-8 x^{2} = 0 \]

18107

\[ {} x^{2} {y^{\prime }}^{2}+3 y y^{\prime } x +2 y^{2} = 0 \]

18108

\[ {} {y^{\prime }}^{2}-\left (y+2 x \right ) y^{\prime }+x^{2}+x y = 0 \]

18109

\[ {} {y^{\prime }}^{3}+\left (x +2\right ) {\mathrm e}^{y} = 0 \]

18110

\[ {} {y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y \]

18111

\[ {} {y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

18112

\[ {} {y^{\prime }}^{2}-4 x y^{\prime }+2 y+2 x^{2} = 0 \]

18113

\[ {} y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \]

18114

\[ {} y^{\prime } = {\mathrm e}^{\frac {y^{\prime }}{y}} \]

18115

\[ {} x = \ln \left (y^{\prime }\right )+\sin \left (y^{\prime }\right ) \]

18116

\[ {} x = {y^{\prime }}^{2}-2 y^{\prime }+2 \]

18117

\[ {} y = y^{\prime } \ln \left (y^{\prime }\right ) \]

18118

\[ {} y = \left (y^{\prime }-1\right ) {\mathrm e}^{y^{\prime }} \]

18119

\[ {} x {y^{\prime }}^{2} = {\mathrm e}^{\frac {1}{y^{\prime }}} \]

18120

\[ {} x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = a \]

18121

\[ {} y^{{2}/{5}}+{y^{\prime }}^{{2}/{5}} = a^{{2}/{5}} \]

18122

\[ {} x = \sin \left (y^{\prime }\right )+y^{\prime } \]

18123

\[ {} y = y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right ) \]

18124

\[ {} y = \arcsin \left (y^{\prime }\right )+\ln \left (1+{y^{\prime }}^{2}\right ) \]

18125

\[ {} y = 2 x y^{\prime }+\ln \left (y^{\prime }\right ) \]

18126

\[ {} y = \left (1+y^{\prime }\right ) x +{y^{\prime }}^{2} \]

18127

\[ {} y = 2 x y^{\prime }+\sin \left (y^{\prime }\right ) \]

18128

\[ {} y = x {y^{\prime }}^{2}-\frac {1}{y^{\prime }} \]

18129

\[ {} y = \frac {3 x y^{\prime }}{2}+{\mathrm e}^{y^{\prime }} \]

18130

\[ {} y = x y^{\prime }+\frac {a}{{y^{\prime }}^{2}} \]

18131

\[ {} y = x y^{\prime }+{y^{\prime }}^{2} \]

18132

\[ {} x {y^{\prime }}^{2}-y y^{\prime }-y^{\prime }+1 = 0 \]

18133

\[ {} y = x y^{\prime }+a \sqrt {1+{y^{\prime }}^{2}} \]

18134

\[ {} x = \frac {y}{y^{\prime }}+\frac {1}{{y^{\prime }}^{2}} \]

18135

\[ {} {\mathrm e}^{-x} y^{\prime }+y^{2}-2 y \,{\mathrm e}^{x} = 1-{\mathrm e}^{2 x} \]

18136

\[ {} y^{\prime }+y^{2}-2 \sin \left (x \right ) y+\sin \left (x \right )^{2}-\cos \left (x \right ) = 0 \]

18137

\[ {} x y^{\prime }-y^{2}+\left (2 x +1\right ) y = x^{2}+2 x \]

18138

\[ {} x^{2} y^{\prime } = 1+x y+x^{2} y^{2} \]

18139

\[ {} y^{2} \left (1+{y^{\prime }}^{2}\right )-4 y y^{\prime }-4 x = 0 \]

18140

\[ {} {y^{\prime }}^{2}-4 y = 0 \]

18141

\[ {} {y^{\prime }}^{3}-4 y y^{\prime } x +8 y^{2} = 0 \]

18142

\[ {} {y^{\prime }}^{2}-y^{2} = 0 \]

18143

\[ {} y^{\prime } = y^{{2}/{3}}+a \]

18144

\[ {} \left (x y^{\prime }+y\right )^{2}+3 x^{5} \left (-2 y+x y^{\prime }\right ) = 0 \]

18145

\[ {} y \left (y-2 x y^{\prime }\right )^{2} = 2 y^{\prime } \]

18146

\[ {} 8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = 27 y-27 x \]

18147

\[ {} \left (y^{\prime }-1\right )^{2} = y^{2} \]

18148

\[ {} y = {y^{\prime }}^{2}-x y^{\prime }+x \]

18149

\[ {} \left (x y^{\prime }+y\right )^{2} = y^{2} y^{\prime } \]

18150

\[ {} y^{2} {y^{\prime }}^{2}+y^{2} = 1 \]

18151

\[ {} {y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

18152

\[ {} 3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

18153

\[ {} y = x y^{\prime }+\sqrt {a^{2} {y^{\prime }}^{2}+b^{2}} \]

18154

\[ {} y^{\prime } = \left (x -y\right )^{2}+1 \]

18155

\[ {} x \sin \left (x \right ) y^{\prime }+\left (\sin \left (x \right )-x \cos \left (x \right )\right ) y = \cos \left (x \right ) \sin \left (x \right )-x \]

18156

\[ {} y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right ) \]

18157

\[ {} x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

18158

\[ {} 5 x y-4 y^{2}-6 x^{2}+\left (y^{2}-8 x y+\frac {5 x^{2}}{2}\right ) y^{\prime } = 0 \]

18159

\[ {} 3 x y^{2}-x^{2}+\left (3 x^{2} y-6 y^{2}-1\right ) y^{\prime } = 0 \]

18160

\[ {} y-x y^{2} \ln \left (x \right )+x y^{\prime } = 0 \]

18161

\[ {} 2 x y \,{\mathrm e}^{x^{2}}-x \sin \left (x \right )+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

18162

\[ {} y^{\prime } = \frac {1}{2 x -y^{2}} \]

18163

\[ {} x^{2}+x y^{\prime } = 3 x +y^{\prime } \]

18164

\[ {} y y^{\prime } x -y^{2} = x^{4} \]

18165

\[ {} \frac {1}{x^{2}-x y+y^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \]

18166

\[ {} \left (2 x -1\right ) y^{\prime }-2 y = \frac {1-4 x}{x^{2}} \]

18167

\[ {} x -y+3+\left (3 x +y+1\right ) y^{\prime } = 0 \]

18168

\[ {} y^{\prime }+\cos \left (\frac {x}{2}+\frac {y}{2}\right ) = \cos \left (\frac {x}{2}-\frac {y}{2}\right ) \]

18169

\[ {} y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0 \]

18170

\[ {} x y^{2} y^{\prime }-y^{3} = \frac {x^{4}}{3} \]

18171

\[ {} 1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

18172

\[ {} x^{2}+y^{2}-y y^{\prime } x = 0 \]

18173

\[ {} x -y+2+\left (x -y+3\right ) y^{\prime } = 0 \]

18174

\[ {} y+x y^{2}-x y^{\prime } = 0 \]

18175

\[ {} 2 y y^{\prime }+2 x +x^{2}+y^{2} = 0 \]

18176

\[ {} \left (x -1\right ) \left (y^{2}-y+1\right ) = \left (y-1\right ) \left (x^{2}+x +1\right ) y^{\prime } \]

18177

\[ {} \left (x -2 x y-y^{2}\right ) y^{\prime }+y^{2} = 0 \]

18178

\[ {} y \cos \left (x \right )+\left (2 y-\sin \left (x \right )\right ) y^{\prime } = 0 \]

18179

\[ {} y^{\prime }-1 = {\mathrm e}^{2 y+x} \]

18180

\[ {} 2 x^{5}+4 x^{3} y-2 x y^{2}+\left (y^{2}+2 x^{2} y-x^{4}\right ) y^{\prime } = 0 \]

18181

\[ {} x^{2} y^{n} y^{\prime } = 2 x y^{\prime }-y \]

18182

\[ {} \left (3 x +3 y+a^{2}\right ) y^{\prime } = 4 x +4 y+b^{2} \]

18183

\[ {} x -y^{2}+2 y y^{\prime } x = 0 \]

18184

\[ {} x y^{\prime }+y = y^{2} \ln \left (x \right ) \]

18185

\[ {} \sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime } = 0 \]

18186

\[ {} y^{\prime } = \sqrt {\frac {9 y^{2}-6 y+2}{x^{2}-2 x +5}} \]

18187

\[ {} \left (5 x -7 y+1\right ) y^{\prime }+x +y-1 = 0 \]

18188

\[ {} x +y+1+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

18189

\[ {} y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \]

18190

\[ {} y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \]

18191

\[ {} 4 x^{2} {y^{\prime }}^{2}-y^{2} = x y^{3} \]

18192

\[ {} y^{\prime }+x {y^{\prime }}^{2}-y = 0 \]

18193

\[ {} y^{\prime \prime }+y = 2 \cos \left (x \right )+2 \sin \left (x \right ) \]

18194

\[ {} x y^{\prime \prime \prime } = 2 \]

18195

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \]

18196

\[ {} \left (x -1\right ) y^{\prime \prime } = 1 \]

18197

\[ {} {y^{\prime }}^{4} = 1 \]

18198

\[ {} y^{\prime \prime }+y = 0 \]

18199

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = 2 \]

18200

\[ {} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]