6.184 Problems 18301 to 18400

Table 6.367: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

18301

\[ {} 5 y^{\prime \prime \prime }-7 y^{\prime \prime } = 3 \]

18302

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime } = -6 \]

18303

\[ {} 3 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 2 \]

18304

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 1 \]

18305

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = x^{2} \]

18306

\[ {} y^{\prime \prime }+8 y^{\prime } = 8 x \]

18307

\[ {} y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

18308

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 8 \,{\mathrm e}^{-2 x} \]

18309

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = 9 \,{\mathrm e}^{-3 x} \]

18310

\[ {} 7 y^{\prime \prime }-y^{\prime } = 14 x \]

18311

\[ {} y^{\prime \prime }+3 y^{\prime } = 3 x \,{\mathrm e}^{-3 x} \]

18312

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 10 \left (1-x \right ) {\mathrm e}^{-2 x} \]

18313

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 1+x \]

18314

\[ {} y^{\prime \prime }+y^{\prime }+y = \left (x^{2}+x \right ) {\mathrm e}^{x} \]

18315

\[ {} y^{\prime \prime }+4 y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]

18316

\[ {} y^{\prime \prime }+y = 4 x \cos \left (x \right ) \]

18317

\[ {} y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \sin \left (n x \right ) \]

18318

\[ {} 5 y+2 y^{\prime }+y^{\prime \prime } = \sin \left (2 x \right ) {\mathrm e}^{-x} \]

18319

\[ {} y^{\prime \prime }+a^{2} y = 2 \cos \left (m x \right )+3 \sin \left (m x \right ) \]

18320

\[ {} y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]

18321

\[ {} y^{\prime \prime }+2 y^{\prime } = 4 \,{\mathrm e}^{x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \]

18322

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 10 \,{\mathrm e}^{-2 x} \cos \left (x \right ) \]

18323

\[ {} 4 y^{\prime \prime }+8 y^{\prime } = x \sin \left (x \right ) \]

18324

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = x \,{\mathrm e}^{x} \]

18325

\[ {} y^{\prime \prime }+y^{\prime }-2 y = x^{2} {\mathrm e}^{4 x} \]

18326

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = \left (x^{2}+x \right ) {\mathrm e}^{3 x} \]

18327

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2}+x \]

18328

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

18329

\[ {} y-2 y^{\prime }+y^{\prime \prime } = x^{3} \]

18330

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = x^{2}+x \]

18331

\[ {} y^{\prime \prime }+y = x^{2} \sin \left (x \right ) \]

18332

\[ {} y+2 y^{\prime }+y^{\prime \prime } = x^{2} {\mathrm e}^{-x} \cos \left (x \right ) \]

18333

\[ {} y^{\prime \prime \prime }-y = \sin \left (x \right ) \]

18334

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

18335

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \cos \left (2 x \right ) {\mathrm e}^{x} \]

18336

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \left (\sin \left (x \right )+2 \cos \left (x \right )\right ) \]

18337

\[ {} y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{x}+{\mathrm e}^{-2 x} \]

18338

\[ {} y^{\prime \prime }+4 y^{\prime } = x +{\mathrm e}^{-4 x} \]

18339

\[ {} -y+y^{\prime \prime } = x +\sin \left (x \right ) \]

18340

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = \left (\sin \left (x \right )+1\right ) {\mathrm e}^{x} \]

18341

\[ {} y^{\prime \prime \prime }-y^{\prime \prime } = {\mathrm e}^{x}+1 \]

18342

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (2 x \right ) \]

18343

\[ {} 4 y+y^{\prime \prime } = \sin \left (2 x \right ) \sin \left (x \right ) \]

18344

\[ {} y^{\prime \prime }-4 y^{\prime } = 2 \cos \left (4 x \right )^{2} \]

18345

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 4 x -2 \,{\mathrm e}^{x} \]

18346

\[ {} y^{\prime \prime }-3 y^{\prime } = 18 x -10 \cos \left (x \right ) \]

18347

\[ {} y-2 y^{\prime }+y^{\prime \prime } = 2+{\mathrm e}^{x} \sin \left (x \right ) \]

18348

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \left (5 x +4\right ) {\mathrm e}^{x}+{\mathrm e}^{-x} \]

18349

\[ {} 5 y+2 y^{\prime }+y^{\prime \prime } = 4 \,{\mathrm e}^{-x}+17 \sin \left (2 x \right ) \]

18350

\[ {} 2 y^{\prime \prime }-3 y^{\prime }-2 y = 5 \,{\mathrm e}^{x} \cosh \left (x \right ) \]

18351

\[ {} 4 y+y^{\prime \prime } = x \sin \left (x \right )^{2} \]

18352

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = x \,{\mathrm e}^{x}+\frac {\cos \left (x \right )}{2} \]

18353

\[ {} y^{\prime \prime }+y^{\prime } = \cos \left (x \right )^{2}+{\mathrm e}^{x}+x^{2} \]

18354

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime } = {\mathrm e}^{x}+3 \sin \left (2 x \right )+1 \]

18355

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 10 \sin \left (x \right )+17 \sin \left (2 x \right ) \]

18356

\[ {} y^{\prime \prime }+y^{\prime } = x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x} \]

18357

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 2 x +{\mathrm e}^{-x}-2 \,{\mathrm e}^{3 x} \]

18358

\[ {} 4 y+y^{\prime \prime } = {\mathrm e}^{x}+4 \sin \left (2 x \right )+2 \cos \left (x \right )^{2}-1 \]

18359

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 6 x \,{\mathrm e}^{-x} \left (1-{\mathrm e}^{-x}\right ) \]

18360

\[ {} y^{\prime \prime }+y = \cos \left (2 x \right )^{2}+\sin \left (\frac {x}{2}\right )^{2} \]

18361

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = 1+8 \cos \left (x \right )+{\mathrm e}^{2 x} \]

18362

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (\frac {x}{2}\right )^{2} \]

18363

\[ {} y^{\prime \prime }-3 y^{\prime } = 1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right ) \]

18364

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \left (1-2 \sin \left (x \right )^{2}\right )+10 x +1 \]

18365

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 4 x +\sin \left (x \right )+\sin \left (2 x \right ) \]

18366

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 1+2 \cos \left (x \right )+\cos \left (2 x \right )-\sin \left (2 x \right ) \]

18367

\[ {} y^{\prime \prime }+y^{\prime }+y+1 = \sin \left (x \right )+x +x^{2} \]

18368

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 18 \,{\mathrm e}^{-3 x}+8 \sin \left (x \right )+6 \cos \left (x \right ) \]

18369

\[ {} y^{\prime \prime }+2 y^{\prime }+1 = 3 \sin \left (2 x \right )+\cos \left (x \right ) \]

18370

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x}+2 x \]

18371

\[ {} y^{\prime \prime }+y = 2 \sin \left (2 x \right ) \sin \left (x \right ) \]

18372

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 4 x +3 \sin \left (x \right )+\cos \left (x \right ) \]

18373

\[ {} -4 y^{\prime }+y^{\prime \prime \prime } = x \,{\mathrm e}^{2 x}+\sin \left (x \right )+x^{2} \]

18374

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime } = x \,{\mathrm e}^{x}-1 \]

18375

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime } = x +2 \,{\mathrm e}^{-x} \]

18376

\[ {} y^{\prime \prime }+y = 2-2 x \]

18377

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 9 x^{2}-12 x +2 \]

18378

\[ {} y^{\prime \prime }+9 y = 36 \,{\mathrm e}^{3 x} \]

18379

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 2 \,{\mathrm e}^{2 x} \]

18380

\[ {} 6 y-5 y^{\prime }+y^{\prime \prime } = \left (12 x -7\right ) {\mathrm e}^{-x} \]

18381

\[ {} y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \]

18382

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 10 \sin \left (x \right ) \]

18383

\[ {} y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

18384

\[ {} 4 y+y^{\prime \prime } = \sin \left (x \right ) \]

18385

\[ {} y^{\prime \prime }+y = 4 x \cos \left (x \right ) \]

18386

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = 2 x^{2} {\mathrm e}^{x} \]

18387

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 16 \,{\mathrm e}^{-x}+9 x -6 \]

18388

\[ {} y^{\prime \prime }-y^{\prime } = -5 \,{\mathrm e}^{-x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \]

18389

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 4 \,{\mathrm e}^{x} \cos \left (x \right ) \]

18390

\[ {} y^{\prime \prime \prime }-y^{\prime } = -2 x \]

18391

\[ {} y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

18392

\[ {} y^{\prime \prime \prime }-y = 2 x \]

18393

\[ {} y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

18394

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = \sin \left (x \right ) \]

18395

\[ {} 5 y+2 y^{\prime }+y^{\prime \prime } = 4 \cos \left (2 x \right )+\sin \left (2 x \right ) \]

18396

\[ {} -y+y^{\prime \prime } = 1 \]

18397

\[ {} -y+y^{\prime \prime } = -2 \cos \left (x \right ) \]

18398

\[ {} y-2 y^{\prime }+y^{\prime \prime } = 4 \,{\mathrm e}^{-x} \]

18399

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = 8 \,{\mathrm e}^{x}+9 \]

18400

\[ {} y^{\prime \prime }-y^{\prime }-5 y = 1 \]