6.189 Problems 18801 to 18900

Table 6.377: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

18801

\[ {} \left [x^{\prime }\left (t \right ) = -3 x \left (t \right )+\frac {5 y \left (t \right )}{2}, y^{\prime }\left (t \right ) = -\frac {5 x \left (t \right )}{2}+2 y \left (t \right )\right ] \]

18802

\[ {} \left [x^{\prime }\left (t \right ) = -x \left (t \right )-\frac {y \left (t \right )}{2}, y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )\right ] \]

18803

\[ {} \left [x^{\prime }\left (t \right ) = 2 x \left (t \right )+\frac {y \left (t \right )}{2}, y^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{2}+y \left (t \right )\right ] \]

18804

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-7 y \left (t \right )] \]

18805

\[ {} \left [x^{\prime }\left (t \right ) = -\frac {5 x \left (t \right )}{2}+\frac {3 y \left (t \right )}{2}, y^{\prime }\left (t \right ) = -\frac {3 x \left (t \right )}{2}+\frac {y \left (t \right )}{2}\right ] \]

18806

\[ {} \left [x^{\prime }\left (t \right ) = 2 x \left (t \right )+\frac {3 y \left (t \right )}{2}, y^{\prime }\left (t \right ) = -\frac {3 x \left (t \right )}{2}-y \left (t \right )\right ] \]

18807

\[ {} \left [x^{\prime }\left (t \right ) = \frac {5 x \left (t \right )}{4}+\frac {3 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = -\frac {3 x \left (t \right )}{4}-\frac {y \left (t \right )}{4}\right ] \]

18808

\[ {} \left [x^{\prime }\left (t \right ) = -3 x \left (t \right )+\frac {5 y \left (t \right )}{2}, y^{\prime }\left (t \right ) = -\frac {5 x \left (t \right )}{2}+2 y \left (t \right )\right ] \]

18809

\[ {} \left [x^{\prime }\left (t \right ) = 2 x \left (t \right )+\frac {y \left (t \right )}{2}, y^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{2}+y \left (t \right )\right ] \]

18810

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )] \]

18811

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )] \]

18812

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )] \]

18813

\[ {} [x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )] \]

18814

\[ {} [x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )] \]

18815

\[ {} [x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -8 x \left (t \right )] \]

18816

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

18817

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

18818

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-2 y \left (t \right )] \]

18819

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+x \left (t \right )^{2}, y^{\prime }\left (t \right ) = y \left (t \right )-2 x \left (t \right ) y \left (t \right )] \]

18820

\[ {} [x^{\prime }\left (t \right ) = 2 y \left (t \right ) x \left (t \right )^{2}-3 x \left (t \right )^{2}-4 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right ) y \left (t \right )^{2}+6 x \left (t \right ) y \left (t \right )] \]

18821

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-x \left (t \right )^{2}, y^{\prime }\left (t \right ) = 2 x \left (t \right ) y \left (t \right )-3 y \left (t \right )+2] \]

18822

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )+2 x \left (t \right ) y \left (t \right )] \]

18823

\[ {} [x^{\prime }\left (t \right ) = 2-y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )^{2}] \]

18824

\[ {} \left [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right )^{2}-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = \frac {y \left (t \right )}{2}-\frac {y \left (t \right )^{2}}{4}-\frac {3 x \left (t \right ) y \left (t \right )}{4}\right ] \]

18825

\[ {} [x^{\prime }\left (t \right ) = -\left (x \left (t \right )-y \left (t \right )\right ) \left (1-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = x \left (t \right ) \left (y \left (t \right )+2\right )] \]

18826

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ) \left (2-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = -x \left (t \right )-y \left (t \right )-2 x \left (t \right ) y \left (t \right )] \]

18827

\[ {} [x^{\prime }\left (t \right ) = \left (x \left (t \right )+2\right ) \left (-x \left (t \right )+y \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )^{2}-y \left (t \right )^{2}] \]

18828

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+2 x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )^{2}-y \left (t \right )^{2}] \]

18829

\[ {} \left [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-\frac {x \left (t \right )^{3}}{5}-\frac {y \left (t \right )}{5}\right ] \]

18830

\[ {} x^{\prime } = \frac {x \sqrt {6 x-9}}{3} \]

18831

\[ {} \left [x^{\prime }\left (t \right ) = x \left (t \right ) \left (1-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right ) \left (\frac {3}{4}-y \left (t \right )-\frac {x \left (t \right )}{2}\right )\right ] \]

18832

\[ {} y^{\prime \prime }+t y = 0 \]

18833

\[ {} y^{\prime \prime }+y^{\prime }+y+y^{3} = 0 \]

18834

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\alpha \left (\alpha +1\right ) y = 0 \]

18835

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y = 0 \]

18836

\[ {} y^{\prime \prime }+\mu \left (1-y^{2}\right ) y^{\prime }+y = 0 \]

18837

\[ {} y^{\prime \prime }-t y = \frac {1}{\pi } \]

18838

\[ {} a \,x^{2} y^{\prime \prime }+b x y^{\prime }+c y = d \]

18839

\[ {} y^{\prime \prime }+y = 0 \]

18840

\[ {} y^{\prime \prime }+9 y = 0 \]

18841

\[ {} y^{\prime \prime }+y^{\prime }+16 y = 0 \]

18842

\[ {} y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

18843

\[ {} y^{\prime \prime }-y^{\prime }+4 y = 0 \]

18844

\[ {} t y^{\prime \prime }+3 y = t \]

18845

\[ {} \left (t -1\right ) y^{\prime \prime }-3 t y^{\prime }+4 y = \sin \left (t \right ) \]

18846

\[ {} t \left (t -4\right ) y^{\prime \prime }+3 t y^{\prime }+4 y = 2 \]

18847

\[ {} y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+3 y \ln \left (t \right ) = 0 \]

18848

\[ {} \left (x +3\right ) y^{\prime \prime }+x y^{\prime }+y \ln \left (x \right ) = 0 \]

18849

\[ {} \left (x -2\right ) y^{\prime \prime }+y^{\prime }+\left (x -2\right ) \tan \left (x \right ) y = 0 \]

18850

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\frac {\alpha \left (\alpha +1\right ) \mu ^{2} y}{-x^{2}+1} = 0 \]

18851

\[ {} y^{\prime \prime }-\frac {t}{y} = \frac {1}{\pi } \]

18852

\[ {} t^{2} y^{\prime \prime }-2 y = 0 \]

18853

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

18854

\[ {} y^{\prime \prime }+4 y = 0 \]

18855

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 0 \]

18856

\[ {} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

18857

\[ {} y-x y^{\prime }+\left (1-x \cot \left (x \right )\right ) y^{\prime \prime } = 0 \]

18858

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

18859

\[ {} a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

18860

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

18861

\[ {} t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y = 0 \]

18862

\[ {} t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

18863

\[ {} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 0 \]

18864

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

18865

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

18866

\[ {} x^{2} y^{\prime \prime }-\left (x -\frac {3}{16}\right ) y = 0 \]

18867

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

18868

\[ {} x y^{\prime \prime }-\left (x +n \right ) y^{\prime }+n y = 0 \]

18869

\[ {} y^{\prime \prime }+a \left (x y^{\prime }+y\right ) = 0 \]

18870

\[ {} y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

18871

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

18872

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 0 \]

18873

\[ {} 9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

18874

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

18875

\[ {} y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

18876

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

18877

\[ {} 2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

18878

\[ {} 6 y^{\prime \prime }-y^{\prime }-y = 0 \]

18879

\[ {} 9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

18880

\[ {} y^{\prime \prime }+2 y^{\prime }-8 y = 0 \]

18881

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

18882

\[ {} y^{\prime \prime }+5 y^{\prime } = 0 \]

18883

\[ {} 4 y^{\prime \prime }-9 y = 0 \]

18884

\[ {} 25 y^{\prime \prime }-20 y^{\prime }+4 y = 0 \]

18885

\[ {} y^{\prime \prime }-4 y^{\prime }+16 y = 0 \]

18886

\[ {} y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

18887

\[ {} y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4} = 0 \]

18888

\[ {} y^{\prime \prime }-9 y^{\prime }+9 y = 0 \]

18889

\[ {} y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

18890

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

18891

\[ {} 9 y^{\prime \prime }-24 y^{\prime }+16 y = 0 \]

18892

\[ {} 4 y^{\prime \prime }+9 y = 0 \]

18893

\[ {} 4 y^{\prime \prime }+9 y^{\prime }-9 y = 0 \]

18894

\[ {} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]

18895

\[ {} y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4} = 0 \]

18896

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

18897

\[ {} y^{\prime \prime }+16 y = 0 \]

18898

\[ {} 9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

18899

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

18900

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 0 \]