| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x = y \left (y^{\prime }+\frac {1}{y^{\prime }}\right )+{y^{\prime }}^{5}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{x}+x \cos \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{3}+x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{\prime } = u^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{3}+x^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = x +\sqrt {1+y^{2}}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = \cos \left (t \right ) x \left (t \right )-\sin \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right ) \sin \left (t \right )+\cos \left (t \right ) y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = \left (3 t -1\right ) x \left (t \right )-\left (1-t \right ) y \left (t \right )+t \,{\mathrm e}^{t^{2}}, y^{\prime }\left (t \right ) = -\left (t +2\right ) x \left (t \right )+\left (t -2\right ) y \left (t \right )-{\mathrm e}^{t^{2}}]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+6 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 8 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )+4 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+2 z \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )-z \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right )-z \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{\prime \prime }+2 a u^{\prime }+\omega ^{2} u = c \cos \left (\omega t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [w_{1}^{\prime }\left (z \right ) = w_{2} \left (z \right ), w_{2}^{\prime }\left (z \right ) = \frac {a w_{1} \left (z \right )}{z^{2}}\right ]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} z^{2} u^{\prime \prime }+\left (3 z +1\right ) u^{\prime }+u = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime }+\ln \left (3\right ) x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+4 x = 4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+\frac {\left (2 t^{3}+\sin \left (t \right )+5\right ) x}{t^{12}+5} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime } = -2 x+3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = k x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }-2 \cos \left (t \right ) x = \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+\frac {x}{t^{2}-1} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+\sec \left (t \right ) x = \frac {1}{t -1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t x^{\prime }+x = 2 t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} x^{\prime }-2 t x = t^{5}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime } = 2 t x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = -x t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+a x = b t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = x+2 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }-2 x = 3 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+3 x = -2 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+a x = b t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }-x = \frac {t}{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+x = 4 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }-2 x = 2 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+k x = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {x}{t^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }-k^{2} x = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+2 x = 6 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+x = a t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = t +x^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime } = \frac {3 x^{{1}/{3}}}{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime } = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+\frac {\sin \left (t \right ) x}{1+{\mathrm e}^{t}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{x^{\prime }} = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \sqrt {1-x^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime } = x^{{1}/{4}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime } = x^{p}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \sin \left (x\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime } = \arctan \left (x\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \ln \left (1+x^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = t^{2} x^{4}+1
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime } = 2+\sin \left (x\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime } = \sin \left (t x\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime } = \left (x+2\right ) \left (1-x^{4}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = x^{3}-x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \arctan \left (x\right )+t
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime } = {\mathrm e}^{x}-t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = t x-t^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = t x-t^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = x^{2}-t^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime } = 1+x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = x^{2}-1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime } = x^{2}+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {x^{2}+x}{2 x+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {x^{2}-x}{2 x-1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = 4 t^{3} x^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = -t x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = {\mathrm e}^{t} \left (1+x^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {t}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = -\frac {t}{4 x^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = -t^{2} x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = 5 t \sqrt {x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime } = 4 t^{3} \sqrt {x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime } = 2 t \sqrt {x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = -\left (p +1\right ) t^{p} x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \sqrt {1-x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2}+1 = \left (y^{5}-1\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +3 y+\left (3 x +y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +y+\left (x -y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a \,x^{p}+b y+\left (b x +d y^{q}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x^{2}-y+\left (4 y^{3}-x \right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y-x^{{1}/{3}}+\left (x +y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {\mathrm e}^{x}-\frac {y^{2}}{2}+\left ({\mathrm e}^{y}-x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x +\sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✓ |
|
| \[
{} x^{2}+2 x y-y^{2}+\left (x -y\right )^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2}+2 x y+2 y^{2}+\left (x^{2}+4 x y+5 y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x -2 y^{3} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}+\left (a x y+y^{4}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{2}+a_{1} x y+a_{2} y^{2}+\left (x^{2}+y b_{1} x +b_{2} y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x +y^{2}+B \left (x \right ) y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +y^{2}+y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+x +\left (x^{2}-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +2 y+\left (x -1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2}+\left (x y+3 y^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime } x +1+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {x+2 t}{t}
\]
|
✓ |
✓ |
✓ |
|