6.212 Problems 21101 to 21200

Table 6.423: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

21101

\[ {} x = y \left (y^{\prime }+\frac {1}{y^{\prime }}\right )+{y^{\prime }}^{5} \]

21102

\[ {} y^{\prime } = {\mathrm e}^{x}+x \cos \left (y\right ) \]

21103

\[ {} y^{\prime } = y^{3}+x^{3} \]

21104

\[ {} u^{\prime } = u^{3} \]

21105

\[ {} y^{\prime } = y^{3}+x^{3} \]

21106

\[ {} y^{\prime } = x +\sqrt {1+y^{2}} \]

21107

\[ {} [x^{\prime }\left (t \right ) = \cos \left (t \right ) x \left (t \right )-\sin \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right ) \sin \left (t \right )+\cos \left (t \right ) y \left (t \right )] \]

21108

\[ {} [x^{\prime }\left (t \right ) = \left (3 t -1\right ) x \left (t \right )-\left (1-t \right ) y \left (t \right )+t \,{\mathrm e}^{t^{2}}, y^{\prime }\left (t \right ) = -\left (t +2\right ) x \left (t \right )+\left (t -2\right ) y \left (t \right )-{\mathrm e}^{t^{2}}] \]

21109

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right )] \]

21110

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+6 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-3 y \left (t \right )] \]

21111

\[ {} [x^{\prime }\left (t \right ) = 8 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )+4 y \left (t \right )] \]

21112

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+2 z \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

21113

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )-z \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right )-z \left (t \right )] \]

21114

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{x} \]

21115

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \]

21116

\[ {} u^{\prime \prime }+2 a u^{\prime }+\omega ^{2} u = c \cos \left (\omega t \right ) \]

21117

\[ {} \left [w_{1}^{\prime }\left (z \right ) = w_{2} \left (z \right ), w_{2}^{\prime }\left (z \right ) = \frac {a w_{1} \left (z \right )}{z^{2}}\right ] \]

21118

\[ {} z^{2} u^{\prime \prime }+\left (3 z +1\right ) u^{\prime }+u = 0 \]

21119

\[ {} x^{\prime }+\ln \left (3\right ) x = 0 \]

21120

\[ {} x^{\prime }+4 x = 4 \]

21121

\[ {} x^{\prime }+\frac {\left (2 t^{3}+\sin \left (t \right )+5\right ) x}{t^{12}+5} = 0 \]

21122

\[ {} x^{\prime } = -2 x+3 \]

21123

\[ {} x^{\prime } = k x \]

21124

\[ {} x^{\prime }-2 \cos \left (t \right ) x = \cos \left (t \right ) \]

21125

\[ {} x^{\prime }+\frac {x}{t^{2}-1} = 0 \]

21126

\[ {} x^{\prime }+\sec \left (t \right ) x = \frac {1}{t -1} \]

21127

\[ {} t x^{\prime }+x = 2 t^{2} \]

21128

\[ {} t^{2} x^{\prime }-2 t x = t^{5} \]

21129

\[ {} x^{\prime } = 2 t x \]

21130

\[ {} x^{\prime } = -x t^{2} \]

21131

\[ {} x^{\prime }+a x = b t \]

21132

\[ {} x^{\prime } = x+2 t \]

21133

\[ {} x^{\prime }-2 x = 3 t \]

21134

\[ {} x^{\prime }+3 x = -2 t \]

21135

\[ {} x^{\prime }+a x = b t \]

21136

\[ {} x^{\prime }-x = \frac {t}{2} \]

21137

\[ {} x^{\prime }+x = 4 t \]

21138

\[ {} x^{\prime }-2 x = 2 t \]

21139

\[ {} x^{\prime }+k x = 1 \]

21140

\[ {} x^{\prime } = \frac {x}{t^{2}+1} \]

21141

\[ {} x^{\prime }-k^{2} x = 1 \]

21142

\[ {} x^{\prime }+2 x = 6 t \]

21143

\[ {} x^{\prime }+x = a t \]

21144

\[ {} x^{\prime } = t +x^{2} \]

21145

\[ {} x^{\prime } = \frac {3 x^{{1}/{3}}}{2} \]

21146

\[ {} x^{\prime } = x^{2} \]

21147

\[ {} x^{\prime }+\frac {\sin \left (t \right ) x}{1+{\mathrm e}^{t}} = 0 \]

21148

\[ {} {\mathrm e}^{x^{\prime }} = x \]

21149

\[ {} x^{\prime } = \sqrt {1-x^{2}} \]

21150

\[ {} x^{\prime } = x^{{1}/{4}} \]

21151

\[ {} x^{\prime } = x^{p} \]

21152

\[ {} x^{\prime } = \sin \left (x\right ) \]

21153

\[ {} x^{\prime } = \arctan \left (x\right ) \]

21154

\[ {} x^{\prime } = \ln \left (1+x^{2}\right ) \]

21155

\[ {} x^{\prime } = t^{2} x^{4}+1 \]

21156

\[ {} x^{\prime } = 2+\sin \left (x\right ) \]

21157

\[ {} x^{\prime } = \sin \left (t x\right ) \]

21158

\[ {} x^{\prime } = \left (x+2\right ) \left (1-x^{4}\right ) \]

21159

\[ {} x^{\prime } = x^{3}-x \]

21160

\[ {} x^{\prime } = \arctan \left (x\right )+t \]

21161

\[ {} x^{\prime } = {\mathrm e}^{x}-t \]

21162

\[ {} x^{\prime } = t x-t^{3} \]

21163

\[ {} x^{\prime } = t x-t^{3} \]

21164

\[ {} x^{\prime } = x^{2}-t^{2} \]

21165

\[ {} x^{\prime } = 1+x^{2} \]

21166

\[ {} x^{\prime } = x^{2}-1 \]

21167

\[ {} x^{\prime } = x^{2}+x \]

21168

\[ {} x^{\prime } = \frac {x^{2}+x}{2 x+1} \]

21169

\[ {} x^{\prime } = \frac {x^{2}-x}{2 x-1} \]

21170

\[ {} x^{\prime } = 4 t^{3} x^{4} \]

21171

\[ {} x^{\prime } = -t x^{2} \]

21172

\[ {} x^{\prime } = {\mathrm e}^{t} \left (1+x^{2}\right ) \]

21173

\[ {} x^{\prime } = \frac {t}{x} \]

21174

\[ {} x^{\prime } = -\frac {t}{4 x^{3}} \]

21175

\[ {} x^{\prime } = -t^{2} x^{2} \]

21176

\[ {} x^{\prime } = 5 t \sqrt {x} \]

21177

\[ {} x^{\prime } = 4 t^{3} \sqrt {x} \]

21178

\[ {} x^{\prime } = 2 t \sqrt {x} \]

21179

\[ {} x^{\prime } = -\left (p +1\right ) t^{p} x^{2} \]

21180

\[ {} x^{\prime } = \sqrt {1-x^{2}} \]

21181

\[ {} 2 x^{2}+1 = \left (y^{5}-1\right ) y^{\prime } \]

21182

\[ {} x +3 y+\left (3 x +y\right ) y^{\prime } = 0 \]

21183

\[ {} x +y+\left (x -y\right ) y^{\prime } = 0 \]

21184

\[ {} a \,x^{p}+b y+\left (b x +d y^{q}\right ) y^{\prime } = 0 \]

21185

\[ {} 3 x^{2}-y+\left (4 y^{3}-x \right ) y^{\prime } = 0 \]

21186

\[ {} y-x^{{1}/{3}}+\left (x +y\right ) y^{\prime } = 0 \]

21187

\[ {} {\mathrm e}^{x}-\frac {y^{2}}{2}+\left ({\mathrm e}^{y}-x y\right ) y^{\prime } = 0 \]

21188

\[ {} x +\sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

21189

\[ {} x^{2}+2 x y-y^{2}+\left (x -y\right )^{2} y^{\prime } = 0 \]

21190

\[ {} x^{2}+2 x y+2 y^{2}+\left (x^{2}+4 x y+5 y^{2}\right ) y^{\prime } = 0 \]

21191

\[ {} x -2 y^{3} y^{\prime } = 0 \]

21192

\[ {} x^{2}+y^{2}+\left (a x y+y^{4}\right ) y^{\prime } = 0 \]

21193

\[ {} x^{2}+a_{1} x y+a_{2} y^{2}+\left (x^{2}+y b_{1} x +b_{2} y^{2}\right ) y^{\prime } = 0 \]

21194

\[ {} x +y^{2}+B \left (x \right ) y y^{\prime } = 0 \]

21195

\[ {} x +y^{2}+y y^{\prime } x = 0 \]

21196

\[ {} 2 y+x +\left (x^{2}-1\right ) y^{\prime } = 0 \]

21197

\[ {} x +2 y+\left (x -1\right ) y^{\prime } = 0 \]

21198

\[ {} y^{2}+\left (x y+3 y^{3}\right ) y^{\prime } = 0 \]

21199

\[ {} y y^{\prime } x +1+y^{2} = 0 \]

21200

\[ {} x^{\prime } = \frac {x+2 t}{t} \]