| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 64 \cos \left (4 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = x \left (\cos \left (x \right )+1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} r^{\prime \prime }-2 r = -{\mathrm e}^{-2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 12 \,{\mathrm e}^{2 x}+24 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 24+24 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime \prime \prime \prime }-2 s^{\prime \prime }+s = 100 \cos \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }-4 y^{\prime }+y = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-5 y^{\prime \prime }+4 y^{\prime } = x^{2}-x +{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} i^{\prime \prime \prime \prime }+9 i^{\prime \prime } = 20 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime } = \frac {\ln \left (x \right )}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 64 \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+\left (\sin \left (x \right )+1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime } = \frac {24 x +24 y}{x^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime \prime }+2 x y^{\prime \prime }-x y^{\prime }-2 x y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+3\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+2 y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\lambda y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = x^{2} y^{2}-y+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = {y^{\prime }}^{2} \left (2+x y^{\prime }-4 y^{2} y^{\prime }\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} Q^{\prime \prime }+k Q = e \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = f \left (x \right )
\]
|
✓ |
✗ |
✓ |
|
| \[
{} y^{\prime \prime }+y = f \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime } = 4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y = 20 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = 12 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+8 y^{\prime }+25 y = 100
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 12 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime \prime }-t y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+2 y = 5 \delta \left (t -1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 3 \delta \left (t -\pi \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = 6 \delta \left (t -2\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 x -y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1+x \right ) y^{\prime \prime }+2 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }-5 y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-x \right ) x y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+4\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+x \right ) y^{\prime \prime }+\left (x -2\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y+{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime }+x y-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y = \sin \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y \,{\mathrm e}^{x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } \cos \left (x \right )+\sin \left (x \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+2 y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime \prime }+y^{\prime }-x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-x \right ) x y^{\prime \prime }+2 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+12 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }-y^{\prime }+4 x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-4 x^{2}+3\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -6 x y-y^{\prime }+x \left (x^{2}+2\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-4\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} U^{\prime \prime }+\frac {2 U^{\prime }}{r}+a U = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }-y = 5 \sqrt {x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+2 y^{\prime }+x y = 2 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1-x \right ) y^{\prime \prime }+\left (2-4 x \right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-x \right ) y^{\prime \prime }+\left (2-4 x \right ) y^{\prime }-y = 4 x^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-9\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-8\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (3 x^{2}-4\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (2 x^{2}-1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x^{2}-1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} v^{\prime \prime }+v = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime }-i x y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-x \right ) x y^{\prime \prime }+\left (1-3 x \right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [y^{\prime }\left (t \right ) = x \left (t \right ), x^{\prime }\left (t \right ) = -y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [u^{\prime }\left (x \right ) = 2 v \left (x \right )-1, v^{\prime }\left (x \right ) = 1+2 u \left (x \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|