6.230 Problems 22901 to 23000

Table 6.459: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

22901

\[ {} y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 64 \cos \left (4 x \right ) \]

22902

\[ {} 4 y+y^{\prime \prime } = x \left (\cos \left (x \right )+1\right ) \]

22903

\[ {} r^{\prime \prime }-2 r = -{\mathrm e}^{-2 t} \]

22904

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 12 \,{\mathrm e}^{2 x}+24 x^{2} \]

22905

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

22906

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 24+24 x \]

22907

\[ {} s^{\prime \prime \prime \prime }-2 s^{\prime \prime }+s = 100 \cos \left (3 t \right ) \]

22908

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = \ln \left (x \right ) \]

22909

\[ {} y^{\left (5\right )}-5 y^{\prime \prime }+4 y^{\prime } = x^{2}-x +{\mathrm e}^{x} \]

22910

\[ {} i^{\prime \prime \prime \prime }+9 i^{\prime \prime } = 20 \,{\mathrm e}^{-t} \]

22911

\[ {} x^{2} y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime } = \frac {\ln \left (x \right )}{x} \]

22912

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 64 \sin \left (2 x \right ) \]

22913

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

22914

\[ {} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+\left (\sin \left (x \right )+1\right ) y = 0 \]

22915

\[ {} y^{\prime \prime \prime } = \frac {24 x +24 y}{x^{3}} \]

22916

\[ {} x y^{\prime \prime \prime }+2 x y^{\prime \prime }-x y^{\prime }-2 x y = 1 \]

22917

\[ {} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+3\right ) y = 0 \]

22918

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

22919

\[ {} y^{\prime \prime }+\lambda y = 0 \]

22920

\[ {} x y^{\prime } = x^{2} y^{2}-y+1 \]

22921

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \left (2+x y^{\prime }-4 y^{2} y^{\prime }\right ) \]

22922

\[ {} Q^{\prime \prime }+k Q = e \left (t \right ) \]

22923

\[ {} y^{\prime \prime } = f \left (x \right ) \]

22924

\[ {} y^{\prime \prime }+y = f \left (x \right ) \]

22925

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

22926

\[ {} y^{\prime \prime }+2 y^{\prime } = 4 \]

22927

\[ {} y^{\prime \prime }+9 y = 20 \,{\mathrm e}^{-t} \]

22928

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 12 t \]

22929

\[ {} y^{\prime \prime }+8 y^{\prime }+25 y = 100 \]

22930

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 12 \,{\mathrm e}^{-t} \]

22931

\[ {} y^{\prime \prime \prime \prime }-y = \cos \left (t \right ) \]

22932

\[ {} y^{\prime \prime }+y = 0 \]

22933

\[ {} t y^{\prime \prime }-t y^{\prime }+y = 0 \]

22934

\[ {} y^{\prime }+2 y = 5 \delta \left (t -1\right ) \]

22935

\[ {} y^{\prime \prime }+y = 3 \delta \left (t -\pi \right ) \]

22936

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 6 \delta \left (t -2\right ) \]

22937

\[ {} y^{\prime }+y = 0 \]

22938

\[ {} y^{\prime } = x y \]

22939

\[ {} y^{\prime } = 2 x -y \]

22940

\[ {} -y+y^{\prime \prime } = 0 \]

22941

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

22942

\[ {} y+x y^{\prime \prime } = 0 \]

22943

\[ {} y+x y^{\prime }+y^{\prime \prime } = 0 \]

22944

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

22945

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

22946

\[ {} \left (1+x \right ) y^{\prime \prime }+2 y^{\prime } = 0 \]

22947

\[ {} 2 y^{\prime \prime }-5 y^{\prime }+3 y = 0 \]

22948

\[ {} x^{2} y^{\prime \prime }-y = 0 \]

22949

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

22950

\[ {} \left (1-x \right ) x y^{\prime \prime }+y = 0 \]

22951

\[ {} \left (x^{2}+4\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

22952

\[ {} \left (x^{2}+x \right ) y^{\prime \prime }+\left (x -2\right ) y = 0 \]

22953

\[ {} y^{\prime \prime }+x y = 0 \]

22954

\[ {} y^{\prime }+3 y = 0 \]

22955

\[ {} y^{\prime }+y = x^{2} \]

22956

\[ {} y^{\prime } = y+{\mathrm e}^{x} \]

22957

\[ {} 2 y^{\prime }+x y-y = 0 \]

22958

\[ {} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

22959

\[ {} y^{\prime \prime }-2 x y^{\prime }+4 y = 0 \]

22960

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

22961

\[ {} y^{\prime \prime }+x y = \sin \left (x \right ) \]

22962

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

22963

\[ {} y^{\prime \prime }+y \,{\mathrm e}^{x} = 0 \]

22964

\[ {} y^{\prime \prime } \cos \left (x \right )+\sin \left (x \right ) y = 0 \]

22965

\[ {} y^{\prime \prime }+y = 0 \]

22966

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

22967

\[ {} 2 x y^{\prime \prime }+y^{\prime }-x y = 0 \]

22968

\[ {} \left (1-x \right ) x y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

22969

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+12 y = 0 \]

22970

\[ {} y+x y^{\prime \prime } = 0 \]

22971

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

22972

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \]

22973

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{2} y = 0 \]

22974

\[ {} 4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-4 x^{2}+3\right ) y = 0 \]

22975

\[ {} x y^{\prime \prime }+y^{\prime }+y = 0 \]

22976

\[ {} -6 x y-y^{\prime }+x \left (x^{2}+2\right ) y^{\prime \prime } = 0 \]

22977

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-4\right ) y = 0 \]

22978

\[ {} U^{\prime \prime }+\frac {2 U^{\prime }}{r}+a U = 0 \]

22979

\[ {} y^{\prime \prime }-x y^{\prime }-y = 5 \sqrt {x} \]

22980

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 2 x \]

22981

\[ {} \left (1-x \right ) y^{\prime \prime }+\left (2-4 x \right ) y^{\prime }-y = 0 \]

22982

\[ {} \left (1-x \right ) y^{\prime \prime }+\left (2-4 x \right ) y^{\prime }-y = 4 x^{2} \]

22983

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+x y = 0 \]

22984

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

22985

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-9\right ) y = 0 \]

22986

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-8\right ) y = 0 \]

22987

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (3 x^{2}-4\right ) y = 0 \]

22988

\[ {} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (2 x^{2}-1\right ) y = 0 \]

22989

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x^{2}-1\right ) y = 0 \]

22990

\[ {} v^{\prime \prime }+v = 0 \]

22991

\[ {} x y^{\prime \prime }+y^{\prime }-i x y = 0 \]

22992

\[ {} y^{\prime \prime }+x y = 0 \]

22993

\[ {} y+x y^{\prime \prime } = 0 \]

22994

\[ {} x y^{\prime \prime }+y^{\prime }+x y = 0 \]

22995

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

22996

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

22997

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (1-3 x \right ) y^{\prime }-y = 0 \]

22998

\[ {} [y^{\prime }\left (t \right ) = x \left (t \right ), x^{\prime }\left (t \right ) = -y \left (t \right )] \]

22999

\[ {} [u^{\prime }\left (x \right ) = 2 v \left (x \right )-1, v^{\prime }\left (x \right ) = 1+2 u \left (x \right )] \]

23000

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]