6.231 Problems 23001 to 23100

Table 6.461: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

23001

\[ {} [y^{\prime \prime }\left (t \right ) = x \left (t \right ), y^{\prime \prime }\left (t \right ) = y \left (t \right )] \]

23002

\[ {} [y^{\prime \prime }\left (t \right ) = x \left (t \right )-2, y^{\prime \prime }\left (t \right ) = y \left (t \right )+2] \]

23003

\[ {} [y^{\prime }\left (t \right )+6 y \left (t \right ) = x^{\prime }\left (t \right ), 3 x \left (t \right )-x^{\prime }\left (t \right ) = 2 y^{\prime }\left (t \right )] \]

23004

\[ {} [x^{\prime }\left (t \right )+x \left (t \right )+2 y \left (t \right ) = 1, 2 x \left (t \right )+y^{\prime }\left (t \right )-2 y \left (t \right ) = t] \]

23005

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 x \left (t \right )-y \left (t \right ) = -\sin \left (t \right ), x^{\prime }\left (t \right )-3 x \left (t \right )+y^{\prime }\left (t \right )+2 y \left (t \right ) = 4 \cos \left (t \right )] \]

23006

\[ {} [x^{\prime \prime }\left (t \right )+2 y^{\prime }\left (t \right )+8 x \left (t \right ) = 32 t, y^{\prime \prime }\left (t \right )+3 x^{\prime }\left (t \right )-2 y \left (t \right ) = 60 \,{\mathrm e}^{-t}] \]

23007

\[ {} \left [x^{\prime }\left (t \right )-2 y^{\prime }\left (t \right ) = {\mathrm e}^{t}, x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = \sqrt {t}\right ] \]

23008

\[ {} [x^{\prime }\left (t \right )+3 y^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right ), 3 x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = \sin \left (t \right )] \]

23009

\[ {} [r^{\prime \prime }\left (t \right ) = r \left (t \right )+y \left (t \right ), y^{\prime \prime }\left (t \right ) = 5 r \left (t \right )-3 y \left (t \right )+t^{2}] \]

23010

\[ {} [x \left (t \right ) y^{\prime }\left (t \right )+y \left (t \right ) x^{\prime }\left (t \right ) = t^{2}, 2 x^{\prime \prime }\left (t \right )-y^{\prime }\left (t \right ) = 5 t] \]

23011

\[ {} [x^{\prime \prime }\left (t \right )+y^{\prime }\left (t \right )+x \left (t \right ) = y \left (t \right )+\sin \left (t \right ), y^{\prime \prime }\left (t \right )+x^{\prime }\left (t \right )-y \left (t \right ) = 2 t^{2}-x \left (t \right )] \]

23012

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), z^{\prime }\left (t \right ) = 2 y \left (t \right )] \]

23013

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ) z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right ) z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )] \]

23014

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 1+y \left (t \right )^{2}, z^{\prime }\left (t \right ) = z \left (t \right )] \]

23015

\[ {} [t^{2} y^{\prime \prime }\left (t \right )+t z^{\prime }\left (t \right )+z \left (t \right ) = t, t y^{\prime }\left (t \right )+z \left (t \right ) = \ln \left (t \right )] \]

23016

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )] \]

23017

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

23018

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )] \]

23019

\[ {} [x^{\prime }\left (t \right )+x \left (t \right )-5 y \left (t \right ) = 0, y^{\prime }\left (t \right )+4 x \left (t \right )+5 y \left (t \right ) = 0] \]

23020

\[ {} [x^{\prime }\left (t \right )+3 y^{\prime }\left (t \right )+y \left (t \right ) = {\mathrm e}^{t}, -x \left (t \right )+y^{\prime }\left (t \right ) = y \left (t \right )] \]

23021

\[ {} [x^{\prime }\left (t \right )-3 x \left (t \right )-6 y \left (t \right ) = 27 t^{2}, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-3 y \left (t \right ) = 5 \,{\mathrm e}^{t}] \]

23022

\[ {} [x^{\prime \prime }\left (t \right ) = -2 y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-x^{\prime }\left (t \right )] \]

23023

\[ {} [y^{\prime \prime }\left (t \right ) = x \left (t \right )-2, x^{\prime \prime }\left (t \right ) = y \left (t \right )+2] \]

23024

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = \cos \left (t \right ), x \left (t \right )+y^{\prime \prime }\left (t \right ) = 2] \]

23025

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), z^{\prime }\left (t \right ) = 2 y \left (t \right )] \]

23026

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+5 y \left (t \right )+3 z \left (t \right ), z^{\prime }\left (t \right ) = 3 x \left (t \right )+9 y \left (t \right )+5 z \left (t \right )] \]

23027

\[ {} [x^{\prime \prime }\left (t \right ) = y \left (t \right )+4 \,{\mathrm e}^{-2 t}, y^{\prime \prime }\left (t \right ) = x \left (t \right )-{\mathrm e}^{-2 t}] \]

23028

\[ {} [x^{\prime }\left (t \right )+6 x \left (t \right )+3 y^{\prime }\left (t \right )+2 y \left (t \right ) = 0, x^{\prime }\left (t \right )+5 x \left (t \right )+2 y^{\prime }\left (t \right )+3 y \left (t \right ) = 0] \]

23029

\[ {} [x^{\prime }\left (t \right )-x \left (t \right )+2 y^{\prime }\left (t \right )+7 y \left (t \right ) = 0, 2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+x \left (t \right )+5 y \left (t \right ) = 0] \]

23030

\[ {} [x^{\prime }\left (t \right )+5 x \left (t \right )+3 y^{\prime }\left (t \right )-11 y \left (t \right ) = 0, x^{\prime }\left (t \right )+3 x \left (t \right )+y^{\prime }\left (t \right )-7 y \left (t \right ) = 0] \]

23031

\[ {} [x^{\prime }\left (t \right )-2 x \left (t \right )+4 y \left (t \right ) = 0, 3 x \left (t \right )+2 y^{\prime }\left (t \right )+y \left (t \right ) = 0] \]

23032

\[ {} [x^{\prime }\left (t \right )+3 x \left (t \right )+2 y \left (t \right ) = 0, 3 x \left (t \right )+y^{\prime }\left (t \right )+y \left (t \right ) = 0] \]

23033

\[ {} [x^{\prime }\left (t \right )+4 x \left (t \right )+3 y^{\prime }\left (t \right )+4 y \left (t \right ) = 0, x^{\prime }\left (t \right )+2 x \left (t \right )+2 y^{\prime }\left (t \right )+2 y \left (t \right ) = 0] \]

23034

\[ {} [x^{\prime }\left (t \right )+x \left (t \right )+2 y^{\prime }\left (t \right )+3 y \left (t \right ) = 0, x^{\prime }\left (t \right )-2 x \left (t \right )+5 y^{\prime }\left (t \right ) = 0] \]

23035

\[ {} [x^{\prime }\left (t \right )-x \left (t \right )-y \left (t \right ) = 0, 5 x \left (t \right )+y^{\prime }\left (t \right )-3 y \left (t \right ) = 0] \]

23036

\[ {} [2 x \left (t \right )-y^{\prime }\left (t \right )-5 y \left (t \right ) = 0, x^{\prime }\left (t \right )+x \left (t \right )+2 y \left (t \right ) = 0] \]

23037

\[ {} [2 x^{\prime }\left (t \right )-6 x \left (t \right )+3 y^{\prime }\left (t \right )-2 y \left (t \right ) = 0, 7 x^{\prime }\left (t \right )+4 x \left (t \right )+7 y^{\prime }\left (t \right )+20 y \left (t \right ) = 0] \]

23038

\[ {} [x^{\prime }\left (t \right )+x \left (t \right )+2 y \left (t \right ) = 8, 2 x \left (t \right )+y^{\prime }\left (t \right )-2 y \left (t \right ) = 2 \,{\mathrm e}^{-t}-8] \]

23039

\[ {} [x^{\prime }\left (t \right )+2 y \left (t \right ) = 4 \,{\mathrm e}^{2 t}, x \left (t \right )+y^{\prime }\left (t \right )-y \left (t \right ) = 2 \,{\mathrm e}^{2 t}] \]

23040

\[ {} [x^{\prime }\left (t \right )-x \left (t \right )+2 y^{\prime }\left (t \right )+7 y \left (t \right ) = 3 t -15, 2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+x \left (t \right )+5 y \left (t \right ) = 9 t -7] \]

23041

\[ {} [x^{\prime }\left (t \right )+3 x \left (t \right )-y^{\prime }\left (t \right )-y \left (t \right ) = 0, 2 x^{\prime }\left (t \right )-9 x \left (t \right )+y^{\prime }\left (t \right )+4 y \left (t \right ) = 15 \,{\mathrm e}^{-3 t}] \]

23042

\[ {} [3 x \left (t \right )-y^{\prime }\left (t \right )-2 y \left (t \right ) = 8 t, x^{\prime }\left (t \right )-2 x \left (t \right )+y \left (t \right ) = 16 \,{\mathrm e}^{-t}] \]

23043

\[ {} [2 x^{\prime }\left (t \right )-x \left (t \right )-y^{\prime }\left (t \right )+y \left (t \right ) = 4 t \,{\mathrm e}^{-t}-3 \,{\mathrm e}^{-t}, x^{\prime }\left (t \right )+4 x \left (t \right )-2 y^{\prime }\left (t \right )-4 y \left (t \right ) = 2 t \,{\mathrm e}^{-t}-6 \,{\mathrm e}^{-t}] \]

23044

\[ {} [2 x^{\prime }\left (t \right )-x \left (t \right )+7 y^{\prime }\left (t \right )+3 y \left (t \right ) = 90 \sin \left (2 t \right ), x^{\prime }\left (t \right )-5 x \left (t \right )+8 y^{\prime }\left (t \right )-3 y \left (t \right ) = 0] \]

23045

\[ {} [x^{\prime \prime }\left (t \right ) = y \left (t \right )+4 \,{\mathrm e}^{-2 t}, y^{\prime \prime }\left (t \right ) = x \left (t \right )-{\mathrm e}^{-2 t}] \]

23046

\[ {} [x^{\prime }\left (t \right )-5 x \left (t \right )+y^{\prime }\left (t \right )+2 z \left (t \right ) = 24 \,{\mathrm e}^{-t}, x^{\prime }\left (t \right )-x \left (t \right )-y \left (t \right ) = 0, 5 y^{\prime }\left (t \right )-11 y \left (t \right )+2 z^{\prime }\left (t \right )-2 z \left (t \right ) = 0] \]

23047

\[ {} [x^{\prime }\left (t \right )+3 x \left (t \right )-2 y \left (t \right ) = {\mathrm e}^{-t}, y^{\prime }\left (t \right )-x \left (t \right )+4 y \left (t \right ) = \sin \left (2 t \right )] \]

23048

\[ {} [x^{\prime }\left (t \right )-x \left (t \right )+2 y \left (t \right )-z \left (t \right ) = t^{2}, y^{\prime }\left (t \right )+3 x \left (t \right )-y \left (t \right )+4 z \left (t \right ) = {\mathrm e}^{t}, z^{\prime }\left (t \right )-2 x \left (t \right )+y \left (t \right )-z \left (t \right ) = 0] \]

23049

\[ {} [z \left (t \right )+x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right )-2 x \left (t \right ) = y \left (t \right )+3 t, z^{\prime }\left (t \right )+4 y \left (t \right ) = z \left (t \right )-\cos \left (t \right )] \]

23050

\[ {} [x^{\prime }\left (t \right )+5 x \left (t \right )-4 y \left (t \right ) = 0, y^{\prime }\left (t \right )-x \left (t \right )+2 y \left (t \right ) = 0] \]

23051

\[ {} [x^{\prime }\left (t \right )+x \left (t \right )-5 y \left (t \right ) = 0, y^{\prime }\left (t \right )+4 x \left (t \right )+5 y \left (t \right ) = 0] \]

23052

\[ {} [x^{\prime }\left (t \right )-2 x \left (t \right )+3 y \left (t \right ) = 0, -2 x \left (t \right )+y^{\prime }\left (t \right )+3 y \left (t \right ) = 0] \]

23053

\[ {} [x^{\prime }\left (t \right )+3 x \left (t \right )-6 y \left (t \right ) = 0, y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )] \]

23054

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+8 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-7 y \left (t \right )] \]

23055

\[ {} [x^{\prime }\left (t \right ) = -12 x \left (t \right )-7 y \left (t \right ), y^{\prime }\left (t \right ) = 19 x \left (t \right )+11 y \left (t \right )] \]

23056

\[ {} [x^{\prime }\left (t \right )-y \left (t \right ) = t, x \left (t \right )+y^{\prime }\left (t \right ) = t^{2}] \]

23057

\[ {} [x^{\prime }\left (t \right )+3 x \left (t \right )+4 y \left (t \right ) = 8 \,{\mathrm e}^{t}, -x \left (t \right )+y^{\prime }\left (t \right )-y \left (t \right ) = 0] \]

23058

\[ {} [x^{\prime }\left (t \right )-2 x \left (t \right )+y \left (t \right ) = {\mathrm e}^{-t}, y^{\prime }\left (t \right )-3 x \left (t \right )+2 y \left (t \right ) = t] \]

23059

\[ {} [x^{\prime }\left (t \right )+2 x \left (t \right )-y \left (t \right ) = 100 \sin \left (t \right ), y^{\prime }\left (t \right )-4 x \left (t \right )-y \left (t \right ) = 36 t] \]

23060

\[ {} [x^{\prime }\left (t \right )-3 x \left (t \right )-6 y \left (t \right ) = 9-9 t, y^{\prime }\left (t \right )+3 x \left (t \right )+3 y \left (t \right ) = 9 t \,{\mathrm e}^{-3 t}] \]

23061

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )+t \,{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )+{\mathrm e}^{-t}] \]

23062

\[ {} [x^{\prime }\left (t \right )+4 x \left (t \right )+2 y \left (t \right )-z \left (t \right ) = 12 \,{\mathrm e}^{t}, y^{\prime }\left (t \right )-2 x \left (t \right )-5 y \left (t \right )+3 z \left (t \right ) = 0, z^{\prime }\left (t \right )+4 x \left (t \right )+z \left (t \right ) = 30 \,{\mathrm e}^{-t}] \]

23063

\[ {} y y^{\prime } = x^{2} \]

23064

\[ {} y^{\prime } \left (1+x \right ) = 1+y \]

23065

\[ {} 1+y^{2} = \left (x^{2}+1\right ) y^{\prime } \]

23066

\[ {} y^{\prime } \sin \left (y\right ) = \sec \left (x \right )^{2} \]

23067

\[ {} x^{\prime } = \frac {x}{t} \]

23068

\[ {} y^{\prime } \left (-x^{2}+1\right ) = 1-y^{2} \]

23069

\[ {} \frac {\tan \left (y\right )}{\cos \left (x \right )} = \cos \left (x \right ) y^{\prime } \]

23070

\[ {} x y^{\prime } = \left (1+x \right ) y^{2} \]

23071

\[ {} x \cos \left (y\right ) y^{\prime }-\left (x^{2}+1\right ) \sin \left (y\right ) = 0 \]

23072

\[ {} \left (x^{2}-1\right ) y^{\prime } = x \left (y-1\right ) \]

23073

\[ {} x \left (y+2\right )+y \left (x +2\right ) y^{\prime } = 0 \]

23074

\[ {} x y \left (x^{2}+1\right ) y^{\prime }-y^{2} = 1 \]

23075

\[ {} x y^{\prime }+y = 0 \]

23076

\[ {} x y^{\prime }+y-1 = 0 \]

23077

\[ {} y-x y^{\prime } = 3 y^{2} y^{\prime } \]

23078

\[ {} 2 x y+x^{2} y^{\prime } = 0 \]

23079

\[ {} x \cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = 5 \]

23080

\[ {} y^{\prime } = \frac {\sin \left (x \right ) \sin \left (y\right )}{\cos \left (x \right ) \cos \left (y\right )} \]

23081

\[ {} x \sec \left (y\right )^{2} y^{\prime }+1+\tan \left (y\right ) = 0 \]

23082

\[ {} {\mathrm e}^{y} \left (x y^{\prime }+1\right ) = 5 \]

23083

\[ {} {\mathrm e}^{x} \left (y^{\prime }+y\right ) = 3 \]

23084

\[ {} \frac {y}{x}+\ln \left (x \right ) y^{\prime } = 2 \]

23085

\[ {} y^{\prime } = \frac {x -y}{x +y} \]

23086

\[ {} y^{\prime } = 1+\frac {y}{x} \]

23087

\[ {} y^{\prime } = \frac {x^{2}+y^{2}}{x y} \]

23088

\[ {} y^{\prime } = \frac {y}{x}-\frac {x}{y} \]

23089

\[ {} y^{\prime } = \frac {x -y+1}{x +y+1} \]

23090

\[ {} y^{\prime } = \frac {x -y+2}{1+x} \]

23091

\[ {} y^{\prime } = \frac {x +y+2}{1+x} \]

23092

\[ {} y^{\prime }+3 y = 5 \]

23093

\[ {} y^{\prime }+2 x y = x \]

23094

\[ {} y^{\prime }-2 x y = 3 x \]

23095

\[ {} y^{\prime }+7 y = {\mathrm e}^{5 x} \]

23096

\[ {} y^{\prime }-6 y = {\mathrm e}^{6 t} \]

23097

\[ {} y^{\prime }-6 y = {\mathrm e}^{6 t} \]

23098

\[ {} z^{\prime }-z \sin \left (x \right ) = {\mathrm e}^{-\cos \left (x \right )} \]

23099

\[ {} z^{\prime }-z \sin \left (x \right ) = {\mathrm e}^{-\cos \left (x \right )} \]

23100

\[ {} y^{\prime }-\frac {3 y}{x} = 5 x \]