| # | ODE | Mathematica | Maple | Sympy |
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = 6 x^{2}-6 x -11
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = 2 x^{3}-9 x^{2}+2 x -16
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}-y = x^{10}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 16 x^{3}+20 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = 6 x^{2} {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{\prime \prime \prime } = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 8 x^{5}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 16 x \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y+4 y^{\prime }+y^{\prime \prime } = 4 \,{\mathrm e}^{-2 x} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-2 y = 4 x^{2}-3 \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+13 y = 24 \,{\mathrm e}^{2 x} \sin \left (3 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+13 y = 24 \,{\mathrm e}^{2 x} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = \left (x -2\right ) {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = 72 x \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 12 \sin \left (x \right )+12 \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 20 \,{\mathrm e}^{x}-20 \cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+16 y = 8 x +8 \sin \left (4 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 8 \cos \left (x \right ) \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 8 \cos \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = x^{6}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+13 y = 24 \,{\mathrm e}^{2 x} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+13 y = 24 \,{\mathrm e}^{2 x} \cos \left (3 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+25 y = \sin \left (5 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{\prime \prime \prime } = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = x^{2}-2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 4 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = -8+2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = 4 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime } = 2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime } = 2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = x +2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = x +2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \csc \left (x \right ) \cot \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \cot \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \tan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \tan \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )^{2} \csc \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = \frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = \frac {{\mathrm e}^{2 x}}{{\mathrm e}^{2 x}+1}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = \cos \left ({\mathrm e}^{-x}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = \frac {2}{\sqrt {1-{\mathrm e}^{-2 x}}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = {\mathrm e}^{-2 x} \sin \left ({\mathrm e}^{-x}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-5 y^{\prime }+4 y = \frac {6}{1+{\mathrm e}^{-2 x}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -y+y^{\prime \prime } = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }-3 y = \cos \left ({\mathrm e}^{-x}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = 15 \sqrt {1+{\mathrm e}^{-x}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = \frac {1}{\sqrt {1+{\mathrm e}^{-2 x}}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = f \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = \frac {1}{\left (-1+{\mathrm e}^{x}\right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = \frac {1}{\left ({\mathrm e}^{x}+1\right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+3 y = \sin \left ({\mathrm e}^{-x}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = \frac {2 \,{\mathrm e}^{x}}{\left ({\mathrm e}^{x}+1\right )^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \csc \left (x \right )^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = \frac {1}{\sqrt {1+{\mathrm e}^{-2 x}}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = \frac {2 \,{\mathrm e}^{-x}}{\left (1+{\mathrm e}^{-2 x}\right )^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = \frac {1}{\left (1-{\mathrm e}^{2 x}\right )^{{3}/{2}}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = {\mathrm e}^{2 x} \left (3 \tan \left ({\mathrm e}^{x}\right )+{\mathrm e}^{x} \sec \left ({\mathrm e}^{x}\right )^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )^{2} \tan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \csc \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = \sec \left ({\mathrm e}^{-x}\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = \frac {2}{{\mathrm e}^{x}+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{\prime \prime \prime } = \sec \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = \frac {2}{{\mathrm e}^{x}-{\mathrm e}^{-x}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = \sin \left ({\mathrm e}^{-x}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = \frac {1}{{\mathrm e}^{2 x}+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )^{3} \tan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+3 y = \sin \left ({\mathrm e}^{x}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \csc \left (x \right )^{3} \cot \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [v^{\prime }\left (x \right )-2 v \left (x \right )+2 w^{\prime }\left (x \right ) = 2-4 \,{\mathrm e}^{2 x}, 2 v^{\prime }\left (x \right )-3 v \left (x \right )+3 w^{\prime }\left (x \right )-w \left (x \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [y^{\prime }\left (x \right )-2 y \left (x \right )-v^{\prime }\left (x \right )-v \left (x \right ) = 6 \,{\mathrm e}^{3 x}, 2 y^{\prime }\left (x \right )-3 y \left (x \right )+v^{\prime }\left (x \right )-3 v \left (x \right ) = 6 \,{\mathrm e}^{3 x}]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [y^{\prime }\left (x \right )+y \left (x \right )-v^{\prime }\left (x \right )-v \left (x \right ) = 0, y^{\prime }\left (x \right )+v^{\prime }\left (x \right )-v \left (x \right ) = {\mathrm e}^{x}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [2 v^{\prime }\left (x \right )+2 v \left (x \right )+w^{\prime }\left (x \right )-w \left (x \right ) = 3 x, v^{\prime }\left (x \right )+v \left (x \right )+w^{\prime }\left (x \right )+w \left (x \right ) = 1]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [3 v^{\prime }\left (x \right )+2 v \left (x \right )+w^{\prime }\left (x \right )-6 w \left (x \right ) = 5 \,{\mathrm e}^{x}, 4 v^{\prime }\left (x \right )+2 v \left (x \right )+w^{\prime }\left (x \right )-8 w \left (x \right ) = 5 \,{\mathrm e}^{x}+2 x -3]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [2 y^{\prime }\left (x \right )+2 y \left (x \right )+w^{\prime }\left (x \right )-w \left (x \right ) = 1+x, y^{\prime }\left (x \right )+3 y \left (x \right )+w^{\prime }\left (x \right )+w \left (x \right ) = 4 x +14]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2} {y^{\prime }}^{2}-x^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} {y^{\prime }}^{2}+x y^{\prime }-y^{2}-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} {y^{\prime }}^{2}-7 y y^{\prime } x +12 y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x {y^{\prime }}^{2}-2 \left (y+2 x \right ) y^{\prime }+8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-x^{2} y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-y^{\prime } x y \left (x +y\right )+x^{3} y^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0
\]
|
✓ |
✓ |
✓ |
|