5.1.9 Problems 801 to 900

Table 5.17: Problems not solved by Mathematica

#

ODE

Mathematica

Maple

Sympy

13978

\[ {} \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }-\left (-\lambda ^{2}+x^{2}\right ) y^{\prime }+\left (x +\lambda \right ) y = 0 \]

13979

\[ {} 2 \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+\left (3 x^{2} a +2 b x +c \right ) y^{\prime }+\lambda y = 0 \]

13980

\[ {} 2 \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+3 \left (3 x^{2} a +2 b x +c \right ) y^{\prime }+\left (6 a x +2 b +\lambda \right ) y = 0 \]

13981

\[ {} \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\left (\alpha \gamma +\beta \right ) x +\beta \lambda \right ) y^{\prime }-\left (x \alpha +\beta \right ) y = 0 \]

13985

\[ {} x^{4} y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y = 0 \]

13988

\[ {} x^{4} y^{\prime \prime }+a \,x^{n} y^{\prime }-\left (a \,x^{n -1}+a b \,x^{n -2}+b^{2}\right ) y = 0 \]

14004

\[ {} \left (x^{2}+a \right )^{2} y^{\prime \prime }+b \,x^{n} \left (x^{2}+a \right ) y^{\prime }-\left (b \,x^{n +1}+a \right ) y = 0 \]

14005

\[ {} \left (x^{2}+a \right )^{2} y^{\prime \prime }+b \,x^{n} \left (x^{2}+a \right ) y^{\prime }-m \left (b \,x^{n +1}+\left (m -1\right ) x^{2}+a \right ) y = 0 \]

14014

\[ {} x^{n} y^{\prime \prime }+c \left (a x +b \right )^{n -4} y = 0 \]

14015

\[ {} x^{n} y^{\prime \prime }+a x y^{\prime }-\left (b^{2} x^{n}+2 b \,x^{n -1}+a b x +a \right ) y = 0 \]

14016

\[ {} x^{n} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y = 0 \]

14017

\[ {} x^{n} y^{\prime \prime }+\left (a \,x^{n -1}+b x \right ) y^{\prime }+\left (a -1\right ) y = 0 \]

14018

\[ {} x^{n} y^{\prime \prime }+\left (2 x^{n -1}+x^{2} a +b x \right ) y^{\prime }+b y = 0 \]

14019

\[ {} x^{n} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{n}+b \right ) y = 0 \]

14020

\[ {} x^{n} y^{\prime \prime }+\left (a \,x^{n}-x^{n -1}+a b x +b \right ) y^{\prime }+y a^{2} b x = 0 \]

14021

\[ {} x^{n} y^{\prime \prime }+\left (a \,x^{m +n}+1\right ) y^{\prime }+a \,x^{m} \left (1+m \,x^{n -1}\right ) y = 0 \]

14022

\[ {} \left (a \,x^{n}+b \right ) y^{\prime \prime }+\left (c \,x^{n}+d \right ) y^{\prime }+\lambda \left (\left (-a \lambda +c \right ) x^{n}+d -b \lambda \right ) y = 0 \]

14023

\[ {} \left (a \,x^{n}+b x +c \right ) y^{\prime \prime } = a n \left (n -1\right ) x^{n -2} y \]

14027

\[ {} x^{2} \left (a^{2} x^{2 n}-1\right ) y^{\prime \prime }+x \left (a p \,x^{n}+q \right ) y^{\prime }+\left (a r \,x^{n}+s \right ) y = 0 \]

14028

\[ {} \left (x^{n}+a \right )^{2} y^{\prime \prime }-b \,x^{n -2} \left (\left (b -1\right ) x^{n}+a \left (n -1\right )\right ) y = 0 \]

14030

\[ {} \left (x^{n}+a \right )^{2} y^{\prime \prime }+b \,x^{m} \left (x^{n}+a \right ) y^{\prime }-x^{n -2} \left (b \,x^{1+m}+a n -a \right ) y = 0 \]

14031

\[ {} \left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+c \,x^{m} \left (a \,x^{n}+b \right ) y^{\prime }+\left (c \,x^{m}-a n \,x^{n -1}-1\right ) y = 0 \]

14033

\[ {} \left (a \,x^{n +1}+b \,x^{n}+c \right )^{2} y^{\prime \prime }+\left (\alpha \,x^{n}+\beta \,x^{n -1}+\gamma \right ) y^{\prime }+\left (n \left (-a n -a +\alpha \right ) x^{n -1}+\left (n -1\right ) \left (-b n +\beta \right ) x^{n -2}\right ) y = 0 \]

14034

\[ {} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+\left (\lambda -x \right ) y^{\prime }+y = 0 \]

14035

\[ {} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+\left (\lambda ^{2}-x^{2}\right ) y^{\prime }+\left (x +\lambda \right ) y = 0 \]

14036

\[ {} 2 \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+a n \,x^{n -1} b m \,x^{m -1} y^{\prime }+y d = 0 \]

14044

\[ {} y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}-\frac {\lambda ^{2}}{4}\right ) y = 0 \]

14049

\[ {} y^{\prime \prime }-y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}+\frac {1}{4}-\frac {\lambda ^{2}}{4}\right ) y = 0 \]

14052

\[ {} y^{\prime \prime }+a \,{\mathrm e}^{\lambda x} y^{\prime }-b \,{\mathrm e}^{x \mu } \left ({\mathrm e}^{\lambda x} a +b \,{\mathrm e}^{x \mu }+\mu \right ) y = 0 \]

14067

\[ {} y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +b \,{\mathrm e}^{x \mu }\right ) y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (b \,{\mathrm e}^{x \mu }+\lambda \right ) y = 0 \]

14068

\[ {} y^{\prime \prime }+{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{2 x \mu }+b \right ) y^{\prime }+\mu \left ({\mathrm e}^{\lambda x} \left (b -a \,{\mathrm e}^{2 x \mu }\right )-\mu \right ) y = 0 \]

14070

\[ {} y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +b \,{\mathrm e}^{x \mu }+c \right ) y^{\prime }+\left (a b \,{\mathrm e}^{\left (\lambda +\mu \right ) x}+{\mathrm e}^{\lambda x} a c +b \mu \,{\mathrm e}^{x \mu }\right ) y = 0 \]

14072

\[ {} y^{\prime \prime }+\left (a \,{\mathrm e}^{\left (\lambda +\mu \right ) x}+a \lambda \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{x \mu }-2 \lambda \right ) y^{\prime }+a^{2} b \lambda \,{\mathrm e}^{\left (\mu +2 \lambda \right ) x} y = 0 \]

14073

\[ {} y^{\prime \prime }+a \,{\mathrm e}^{b \,x^{n}} y^{\prime }+c \left (a \,{\mathrm e}^{b \,x^{n}}-c \right ) y = 0 \]

14074

\[ {} \left ({\mathrm e}^{\lambda x} a +b \right ) y^{\prime \prime }-a \,\lambda ^{2} {\mathrm e}^{\lambda x} y = 0 \]

14155

\[ {} y^{4} x^{3}+x^{2} y^{3}+x y^{2}+y+\left (y^{3} x^{4}-y^{2} x^{3}-x^{3} y+x \right ) y^{\prime } = 0 \]

14169

\[ {} x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right ) = 0 \]

14172

\[ {} {y^{\prime }}^{3}-4 y y^{\prime } x +8 y^{2} = 0 \]

14176

\[ {} {\mathrm e}^{2 y} {y^{\prime }}^{3}+\left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x} = 0 \]

14181

\[ {} \left (x -y^{\prime }-y\right )^{2} = x^{2} \left (2 x y-x^{2} y^{\prime }\right ) \]

14267

\[ {} x^{2} y^{\prime \prime }-2 n x \left (1+x \right ) y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y = 0 \]

14268

\[ {} x^{4} y^{\prime \prime }+2 x^{3} \left (1+x \right ) y^{\prime }+n^{2} y = 0 \]

14286

\[ {} x^{2} \left (-x^{3}+1\right ) y^{\prime \prime }-x^{3} y^{\prime }-2 y = 0 \]

14288

\[ {} y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }+2 \tan \left (x \right ) {y^{\prime }}^{2} = 0 \]

14361

\[ {} {x^{\prime }}^{2}+t x = \sqrt {t +1} \]

14546

\[ {} y^{\prime \prime }+y = 0 \]

14547

\[ {} y^{\prime \prime }+y = 0 \]

14556

\[ {} 3 x^{2} y+2-\left (x^{3}+y\right ) y^{\prime } = 0 \]

14567

\[ {} \frac {1+8 x y^{{2}/{3}}}{x^{{2}/{3}} y^{{1}/{3}}}+\frac {\left (2 x^{{4}/{3}} y^{{2}/{3}}-x^{{1}/{3}}\right ) y^{\prime }}{y^{{4}/{3}}} = 0 \]

14948

\[ {} \left (2 t +1\right ) x^{\prime \prime }+t^{3} x^{\prime }+x = 0 \]

14952

\[ {} \sin \left (t \right ) x^{\prime \prime }+\cos \left (t \right ) x^{\prime }+2 x = 0 \]

14957

\[ {} f \left (t \right ) x^{\prime \prime }+x g \left (t \right ) = 0 \]

14977

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-4 y \left (t \right )-x \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}\right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+4 y \left (t \right )-y \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )] \]

14978

\[ {} \left [x^{\prime }\left (t \right ) = y \left (t \right )+\frac {x \left (t \right ) \left (1-x \left (t \right )^{2}-y \left (t \right )^{2}\right )}{\sqrt {x \left (t \right )^{2}+y \left (t \right )^{2}}}, y^{\prime }\left (t \right ) = -x \left (t \right )+\frac {y \left (t \right ) \left (1-x \left (t \right )^{2}-y \left (t \right )^{2}\right )}{\sqrt {x \left (t \right )^{2}+y \left (t \right )^{2}}}\right ] \]

14979

\[ {} x^{\prime \prime }+x^{4} x^{\prime }-x^{\prime }+x = 0 \]

14980

\[ {} x^{\prime \prime }+x^{\prime }+{x^{\prime }}^{3}+x = 0 \]

14981

\[ {} x^{\prime \prime }+\left (x^{4}+x^{2}\right ) x^{\prime }+x^{3}+x = 0 \]

14982

\[ {} x^{\prime \prime }+\left (5 x^{4}-6 x^{2}\right ) x^{\prime }+x^{3} = 0 \]

14983

\[ {} x^{\prime \prime }+\left (1+x^{2}\right ) x^{\prime }+x^{3} = 0 \]

15067

\[ {} \left (\cos \left (t \right ) t -\sin \left (t \right )\right ) x^{\prime \prime }-x^{\prime } t \sin \left (t \right )-x \sin \left (t \right ) = 0 \]

15151

\[ {} y^{\prime } = x y^{3}+x^{2} \]

15165

\[ {} y = x^{2}+2 x y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \]

15215

\[ {} {y^{\prime \prime }}^{3}+y^{\prime \prime }+1 = x \]

15231

\[ {} y^{\prime } = \sin \left (x y\right ) \]

15237

\[ {} y^{\prime } = \ln \left (x y\right ) \]

15243

\[ {} y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 1 \]

15255

\[ {} y^{\prime \prime \prime }+x y^{\prime \prime }-y^{2} = \sin \left (x \right ) \]

15256

\[ {} {y^{\prime }}^{2}+x y {y^{\prime }}^{2} = \ln \left (x \right ) \]

15257

\[ {} \sin \left (y^{\prime \prime }\right )+y y^{\prime \prime \prime \prime } = 1 \]

15258

\[ {} \sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime } = x y \]

15260

\[ {} {y^{\prime \prime \prime }}^{2}+\sqrt {y} = \sin \left (x \right ) \]

15265

\[ {} \left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right ) = x^{2} \]

15266

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cot \left (x \right ) = 0 \]

15267

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]

15268

\[ {} x y^{\prime \prime }+2 x^{2} y^{\prime }+\sin \left (x \right ) y = \sinh \left (x \right ) \]

15269

\[ {} \sin \left (x \right ) y^{\prime \prime }+x y^{\prime }+7 y = 1 \]

15273

\[ {} y^{\prime \prime }+\frac {k x}{y^{4}} = 0 \]

15275

\[ {} x y^{\prime \prime }+y^{\prime } \sin \left (x \right )+y \cos \left (x \right ) = 0 \]

15281

\[ {} \ln \left (x^{2}+1\right ) y^{\prime \prime }+\frac {4 x y^{\prime }}{x^{2}+1}+\frac {\left (-x^{2}+1\right ) y}{\left (x^{2}+1\right )^{2}} = 0 \]

15286

\[ {} x y^{\prime \prime }+\left (6 x y^{2}+1\right ) y^{\prime }+2 y^{3}+1 = 0 \]

15288

\[ {} \left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime \prime }-x {y^{\prime }}^{2} \sin \left (y\right )+2 \left (\cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime } = \sin \left (x \right ) y \]

15291

\[ {} \left (\cos \left (y\right )-y \sin \left (y\right )\right ) y^{\prime \prime }-{y^{\prime }}^{2} \left (2 \sin \left (y\right )+y \cos \left (y\right )\right ) = \sin \left (x \right ) \]

15298

\[ {} y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{x}+\frac {y}{x^{3}} = \frac {{\mathrm e}^{-\frac {1}{x}}}{x^{3}} \]

15369

\[ {} t^{2} y^{\prime \prime }-6 t y^{\prime }+y \sin \left (2 t \right ) = \ln \left (t \right ) \]

15371

\[ {} y^{\prime \prime }+t y^{\prime }-y \ln \left (t \right ) = \cos \left (2 t \right ) \]

15518

\[ {} -{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

15593

\[ {} x^{\prime \prime }+x^{\prime }+x-x^{3} = 0 \]

15594

\[ {} x^{\prime \prime }+x^{\prime }+x+x^{3} = 0 \]

15637

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

15654

\[ {} y^{\prime } = y^{3}+x^{3} \]

15659

\[ {} y^{\prime } = \frac {1}{\sqrt {15-x^{2}-y^{2}}} \]

15700

\[ {} y^{\prime } = -2 y+y^{2} \]

15771

\[ {} \sqrt {1-x}\, y^{\prime \prime }-4 y = \sin \left (x \right ) \]

15772

\[ {} \left (x^{2}-4\right ) y^{\prime \prime }+y \ln \left (x \right ) = x \,{\mathrm e}^{x} \]

15850

\[ {} \left [y_{1}^{\prime }\left (x \right ) = \sin \left (x \right ) y_{1} \left (x \right )+\sqrt {x}\, y_{2} \left (x \right )+\ln \left (x \right ), y_{2}^{\prime }\left (x \right ) = \tan \left (x \right ) y_{1} \left (x \right )-{\mathrm e}^{x} y_{2} \left (x \right )+1\right ] \]

15851

\[ {} \left [y_{1}^{\prime }\left (x \right ) = \sin \left (x \right ) y_{1} \left (x \right )+\sqrt {x}\, y_{2} \left (x \right )+\ln \left (x \right ), y_{2}^{\prime }\left (x \right ) = \tan \left (x \right ) y_{1} \left (x \right )-{\mathrm e}^{x} y_{2} \left (x \right )+1\right ] \]

15852

\[ {} \left [y_{1}^{\prime }\left (x \right ) = {\mathrm e}^{-x} y_{1} \left (x \right )-\sqrt {1+x}\, y_{2} \left (x \right )+x^{2}, y_{2}^{\prime }\left (x \right ) = \frac {y_{1} \left (x \right )}{\left (x -2\right )^{2}}\right ] \]

15853

\[ {} \left [y_{1}^{\prime }\left (x \right ) = {\mathrm e}^{-x} y_{1} \left (x \right )-\sqrt {1+x}\, y_{2} \left (x \right )+x^{2}, y_{2}^{\prime }\left (x \right ) = \frac {y_{1} \left (x \right )}{\left (x -2\right )^{2}}\right ] \]

15865

\[ {} [y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right ) x -x^{2} y_{2} \left (x \right )+4 x, y_{2}^{\prime }\left (x \right ) = {\mathrm e}^{x} y_{1} \left (x \right )+3 \,{\mathrm e}^{-x} y_{2} \left (x \right )-\cos \left (3 x \right )] \]

15919

\[ {} y^{\prime } = \left (1+y^{2}\right ) t \]