5.3.67 Problems 6601 to 6700

Table 5.179: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

20904

\[ {} y^{\prime \prime }+\left (1+\frac {2 \cot \left (x \right )}{x}-\frac {2}{x^{2}}\right ) y = x \cos \left (x \right ) \]

20905

\[ {} x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

20907

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{4}/{3}}}-\frac {6}{x^{2}}\right ) y = 0 \]

20908

\[ {} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+y = 0 \]

20909

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right ) \]

20910

\[ {} y^{\prime \prime }-\left (8 \,{\mathrm e}^{2 x}+2\right ) y^{\prime }+4 \,{\mathrm e}^{4 x} y = {\mathrm e}^{6 x} \]

20911

\[ {} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+\frac {\csc \left (x \right )^{2} y}{2} = 0 \]

20912

\[ {} x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

20913

\[ {} x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{3} \sin \left (x^{2}\right ) \]

20914

\[ {} y^{\prime \prime } \cos \left (x \right )+y^{\prime } \sin \left (x \right )-2 \cos \left (x \right )^{3} y = 2 \cos \left (x \right )^{5} \]

20915

\[ {} \left (1+x \right )^{2} y^{\prime \prime }+y^{\prime } \left (1+x \right )+y = 4 \cos \left (\ln \left (1+x \right )\right ) \]

20916

\[ {} x y^{\prime \prime }+\left (x -1\right ) y^{\prime }-y = x^{2} \]

20917

\[ {} 3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+6 x +2\right ) y^{\prime }-4 y = 0 \]

20920

\[ {} 2 \left (1+x \right ) y-2 x \left (1+x \right ) y^{\prime }+x^{2} y^{\prime \prime } = x^{3} \]

20921

\[ {} y^{\prime \prime }+\left (1-\cot \left (x \right )\right ) y^{\prime }-y \cot \left (x \right ) = \sin \left (x \right )^{2} \]

20937

\[ {} 3 x^{2}+6 x y^{2}+\left (6 x^{2}+4 y^{3}\right ) y^{\prime } = 0 \]

20943

\[ {} y = x y^{\prime }+\frac {1}{y^{\prime }} \]

20950

\[ {} x^{2}-x y+y^{2}-y y^{\prime } x = 0 \]

20959

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

20960

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

20972

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \]

21007

\[ {} x y^{\prime \prime }-x y^{\prime }+y = {\mathrm e}^{x} \]

21016

\[ {} x^{2} \left (x -2\right ) y^{\prime \prime }+4 \left (x -2\right ) y^{\prime }+3 y = 0 \]

21026

\[ {} x y^{\prime \prime }-\left (x +4\right ) y^{\prime }+2 y = 0 \]

21066

\[ {} y^{\prime } = \cos \left (y\right ) \]

21077

\[ {} x^{\prime } = x^{3}+a x^{2}-b x \]

21078

\[ {} y^{\prime } = \frac {1+y}{x +2}-{\mathrm e}^{\frac {1+y}{x +2}} \]

21079

\[ {} y^{\prime } = \frac {1+y}{x +2}+{\mathrm e}^{\frac {1+y}{x +2}} \]

21080

\[ {} y^{\prime } = \frac {x +y+1}{x +2}-{\mathrm e}^{\frac {x +y+1}{x +2}} \]

21093

\[ {} \cos \left (x +y^{2}\right )+3 y+\left (2 y \cos \left (x +y^{2}\right )+3 x \right ) y^{\prime } = 0 \]

21097

\[ {} y = x y^{\prime }-\sqrt {y^{\prime }-1} \]

21100

\[ {} y = x {y^{\prime }}^{2}+\ln \left ({y^{\prime }}^{2}\right ) \]

21101

\[ {} x = y \left (y^{\prime }+\frac {1}{y^{\prime }}\right )+{y^{\prime }}^{5} \]

21105

\[ {} y^{\prime } = y^{3}+x^{3} \]

21106

\[ {} y^{\prime } = x +\sqrt {1+y^{2}} \]

21108

\[ {} [x^{\prime }\left (t \right ) = \left (3 t -1\right ) x \left (t \right )-\left (1-t \right ) y \left (t \right )+t \,{\mathrm e}^{t^{2}}, y^{\prime }\left (t \right ) = -\left (t +2\right ) x \left (t \right )+\left (t -2\right ) y \left (t \right )-{\mathrm e}^{t^{2}}] \]

21117

\[ {} \left [w_{1}^{\prime }\left (z \right ) = w_{2} \left (z \right ), w_{2}^{\prime }\left (z \right ) = \frac {a w_{1} \left (z \right )}{z^{2}}\right ] \]

21118

\[ {} z^{2} u^{\prime \prime }+\left (3 z +1\right ) u^{\prime }+u = 0 \]

21121

\[ {} x^{\prime }+\frac {\left (2 t^{3}+\sin \left (t \right )+5\right ) x}{t^{12}+5} = 0 \]

21128

\[ {} t^{2} x^{\prime }-2 t x = t^{5} \]

21144

\[ {} x^{\prime } = t +x^{2} \]

21145

\[ {} x^{\prime } = \frac {3 x^{{1}/{3}}}{2} \]

21149

\[ {} x^{\prime } = \sqrt {1-x^{2}} \]

21150

\[ {} x^{\prime } = x^{{1}/{4}} \]

21152

\[ {} x^{\prime } = \sin \left (x\right ) \]

21155

\[ {} x^{\prime } = t^{2} x^{4}+1 \]

21156

\[ {} x^{\prime } = 2+\sin \left (x\right ) \]

21157

\[ {} x^{\prime } = \sin \left (t x\right ) \]

21160

\[ {} x^{\prime } = \arctan \left (x\right )+t \]

21164

\[ {} x^{\prime } = x^{2}-t^{2} \]

21166

\[ {} x^{\prime } = x^{2}-1 \]

21176

\[ {} x^{\prime } = 5 t \sqrt {x} \]

21177

\[ {} x^{\prime } = 4 t^{3} \sqrt {x} \]

21184

\[ {} a \,x^{p}+b y+\left (b x +d y^{q}\right ) y^{\prime } = 0 \]

21185

\[ {} 3 x^{2}-y+\left (4 y^{3}-x \right ) y^{\prime } = 0 \]

21186

\[ {} y-x^{{1}/{3}}+\left (x +y\right ) y^{\prime } = 0 \]

21187

\[ {} {\mathrm e}^{x}-\frac {y^{2}}{2}+\left ({\mathrm e}^{y}-x y\right ) y^{\prime } = 0 \]

21189

\[ {} x^{2}+2 x y-y^{2}+\left (x -y\right )^{2} y^{\prime } = 0 \]

21190

\[ {} x^{2}+2 x y+2 y^{2}+\left (x^{2}+4 x y+5 y^{2}\right ) y^{\prime } = 0 \]

21192

\[ {} x^{2}+y^{2}+\left (a x y+y^{4}\right ) y^{\prime } = 0 \]

21193

\[ {} x^{2}+a_{1} x y+a_{2} y^{2}+\left (x^{2}+y b_{1} x +b_{2} y^{2}\right ) y^{\prime } = 0 \]

21198

\[ {} y^{2}+\left (x y+3 y^{3}\right ) y^{\prime } = 0 \]

21210

\[ {} {x^{\prime }}^{2} = x^{2}+t^{2}-1 \]

21212

\[ {} {x^{\prime }}^{2}-t x+x = 0 \]

21216

\[ {} x = t x^{\prime }+\frac {1}{x^{\prime }} \]

21222

\[ {} x^{\prime \prime }+p \left (t \right ) x^{\prime }+q \left (t \right ) x = 0 \]

21223

\[ {} x^{\prime \prime }+\frac {x^{\prime }}{t}+q \left (t \right ) x = 0 \]

21272

\[ {} x^{\prime \prime }+\frac {\left (t^{5}+1\right ) x}{t^{4}+5} = 0 \]

21273

\[ {} x^{\prime \prime }+\sqrt {t^{6}+3 t^{5}+1}\, x = 0 \]

21274

\[ {} x^{\prime \prime }+2 t^{3} x = 0 \]

21275

\[ {} x^{\prime \prime }-p \left (t \right ) x = q \left (t \right ) \]

21276

\[ {} x^{\prime \prime }+p \left (t \right ) x^{\prime }+q \left (t \right ) x = 0 \]

21278

\[ {} x^{\prime \prime }-\frac {t x^{\prime }}{4}+x = 0 \]

21280

\[ {} x^{\prime \prime }-2 x^{\prime } \left (x-1\right ) = 0 \]

21281

\[ {} x^{\prime \prime } = 2 {x^{\prime }}^{3} x \]

21282

\[ {} x x^{\prime \prime }-2 {x^{\prime }}^{2}-x^{2} = 0 \]

21283

\[ {} x x^{\prime \prime }-{x^{\prime }}^{2}+{\mathrm e}^{t} x^{2} = 0 \]

21284

\[ {} x x^{\prime \prime }-{x^{\prime }}^{2}+{\mathrm e}^{t} x^{2} = 0 \]

21290

\[ {} x^{\prime \prime }-t x^{\prime }+3 x = 0 \]

21300

\[ {} x^{\prime \prime \prime }+a x^{\prime \prime }+b x^{\prime }+c x = 0 \]

21301

\[ {} x^{\prime \prime \prime }-3 x^{\prime }+k x = 0 \]

21310

\[ {} x^{\left (5\right )}+x = 0 \]

21353

\[ {} [x^{\prime }\left (t \right )-t y \left (t \right ) = 1, y^{\prime }\left (t \right )-t x^{\prime }\left (t \right ) = 3] \]

21354

\[ {} [t^{2} x^{\prime }\left (t \right )-y \left (t \right ) = 1, y^{\prime }\left (t \right )-2 x \left (t \right ) = 0] \]

21356

\[ {} [t x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 1, y^{\prime }\left (t \right )+x \left (t \right )+{\mathrm e}^{x^{\prime }\left (t \right )} = 1] \]

21357

\[ {} [x \left (t \right ) x^{\prime }\left (t \right )+y \left (t \right ) = 2 t, y^{\prime }\left (t \right )+2 x \left (t \right )^{2} = 1] \]

21364

\[ {} L x^{\prime \prime }+g \sin \left (x\right ) = 0 \]

21365

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )+x \left (t \right ) y \left (t \right )] \]

21366

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-7 x \left (t \right ) y \left (t \right )-a x \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )+4 x \left (t \right ) y \left (t \right )-a y \left (t \right )] \]

21367

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-2 x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )+x \left (t \right ) y \left (t \right )] \]

21368

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-4 x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )+x \left (t \right ) y \left (t \right )] \]

21369

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ) \left (3-y \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right ) \left (x \left (t \right )-5\right )] \]

21370

\[ {} x^{\prime \prime } = x-x^{3} \]

21371

\[ {} x^{\prime \prime } = x^{3}-x \]

21372

\[ {} x^{\prime \prime } = x^{3}-x \]

21373

\[ {} x^{\prime \prime } = x^{3}-x \]

21374

\[ {} x^{\prime \prime } = x-x^{3} \]

21375

\[ {} x^{\prime \prime } = x-x^{3} \]

21376

\[ {} x^{\prime \prime } = x-x^{3} \]

21377

\[ {} x^{\prime \prime }+x+8 x^{7} = 0 \]