5.3.68 Problems 6701 to 6800

Table 5.181: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

21378

\[ {} x^{\prime \prime }+x+\frac {x^{2}}{3} = 0 \]

21379

\[ {} x^{\prime \prime }-x+3 x^{2} = 0 \]

21380

\[ {} x^{\prime \prime }-x+3 x^{2} = 0 \]

21381

\[ {} x^{\prime \prime }-x+3 x^{2} = 0 \]

21382

\[ {} x^{\prime \prime }-x+3 x^{2} = 0 \]

21385

\[ {} t x^{\prime \prime } = t x+1 \]

21389

\[ {} t^{2} x^{\prime \prime }-3 t x^{\prime }+\left (4-t \right ) x = 0 \]

21392

\[ {} t^{2} x^{\prime \prime }+t x^{\prime }+\left (t^{2}-1\right ) x = 0 \]

21394

\[ {} s y^{\prime \prime }+\lambda y = 0 \]

21406

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-4 y \left (t \right )] \]

21407

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

21408

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )+\delta \left (t \right )] \]

21409

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 7 x \left (t \right )-4 y \left (t \right )] \]

21410

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )] \]

21411

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )] \]

21412

\[ {} [x^{\prime }\left (t \right ) = -2 a x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = \left (a^{2}+9\right ) x \left (t \right )] \]

21413

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-5 y \left (t \right )] \]

21419

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right )-x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{2} \left (t \right )-x_{3} \left (t \right )] \]

21423

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -a x_{3} \left (t \right )-b x_{2} \left (t \right )-c x_{1} \left (t \right )] \]

21430

\[ {} x^{\prime } = \lambda x-x^{3}-x^{5} \]

21432

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+y \left (t \right )^{2}, y^{\prime }\left (t \right ) = -2 y \left (t \right )-x \left (t \right )^{2}] \]

21434

\[ {} x^{\prime \prime }-x^{3} = 0 \]

21435

\[ {} x^{\prime \prime }+4 x^{3} = 0 \]

21436

\[ {} x^{\prime \prime }+6 x^{5} = 0 \]

21437

\[ {} x^{\prime \prime }+\lambda x-x^{3} = 0 \]

21438

\[ {} x^{\prime \prime }+4 x^{3} = 0 \]

21439

\[ {} x^{\prime \prime }+4 x^{3} = 0 \]

21440

\[ {} -x^{\prime \prime } = 1-x-x^{2} \]

21441

\[ {} -x^{\prime \prime }+x = {\mathrm e}^{-x} \]

21442

\[ {} -x^{\prime \prime }+x = {\mathrm e}^{-x^{2}} \]

21443

\[ {} -x^{\prime \prime } = \frac {1}{\sqrt {1+x^{2}}}-x \]

21444

\[ {} -x^{\prime \prime } = 2 x-x^{2} \]

21445

\[ {} -x^{\prime \prime } = \arctan \left (x\right ) \]

21467

\[ {} y^{\prime } = \frac {x}{y^{2} \sqrt {x^{2}+1}} \]

21476

\[ {} 2 x +3 y-1+\left (2 x -3 y+2\right ) y^{\prime } = 0 \]

21478

\[ {} x +2 y-1+3 \left (2 y+x \right ) y^{\prime } = 0 \]

21482

\[ {} x^{2}-x y+y^{2}-y y^{\prime } x = 0 \]

21484

\[ {} x^{2}-2 y^{2}+y y^{\prime } x = 0 \]

21486

\[ {} y+x y^{\prime }+\frac {y^{3} \left (y-x y^{\prime }\right )}{x} = 0 \]

21487

\[ {} \left (x -4\right ) y^{4}-x^{3} \left (y^{2}-3\right ) y^{\prime } = 0 \]

21493

\[ {} y^{\prime }+\frac {2 x \sin \left (y\right )+y^{3} {\mathrm e}^{x}}{x^{2} \cos \left (y\right )+3 y^{2} {\mathrm e}^{x}} = 0 \]

21495

\[ {} 3 x \left (x y-2\right )+\left (x^{3}+2 y\right ) y^{\prime } = 0 \]

21496

\[ {} 3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{2}\right ) y^{\prime } = 0 \]

21498

\[ {} \left (x +y^{2}\right ) y^{\prime }+y-x^{2} = 0 \]

21499

\[ {} 3 x^{2}+4 x y+\left (2 x^{2}+2 y\right ) y^{\prime } = 0 \]

21507

\[ {} y^{\prime } = \frac {2 x y}{-x^{2}+y^{2}} \]

21514

\[ {} y^{\prime } = \frac {x^{2}+y^{2}}{x y} \]

21518

\[ {} 1+3 x \sin \left (y\right )-x^{2} \cos \left (y\right ) y^{\prime } = 0 \]

21520

\[ {} \left (x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right ) y = x \,{\mathrm e}^{-x} \]

21530

\[ {} y^{\prime }+\frac {y}{x^{2} y^{2}+x} = \frac {x y^{2}}{x^{2} y^{2}+x} \]

21535

\[ {} 4 x y+3 y^{2}-x +x \left (2 y+x \right ) y^{\prime } = 0 \]

21536

\[ {} y \left (x +y+1\right )+x \left (x +3 y+2\right ) y^{\prime } = 0 \]

21538

\[ {} y^{\prime } = \frac {-x y+\ln \left (x^{2}\right )}{x^{2}+x \,{\mathrm e}^{y}} \]

21562

\[ {} y^{\prime } = \frac {2 x y}{-x^{2}+y^{2}} \]

21565

\[ {} y^{2}+\left (3 x y-1\right ) y^{\prime } = 0 \]

21567

\[ {} \frac {x^{2}}{y}+y^{2}-\left (\frac {x^{3}}{y^{2}}+x y+y^{2}\right ) y^{\prime } = 0 \]

21575

\[ {} x u^{\prime \prime }-\left (x^{2} {\mathrm e}^{x}+1\right ) u^{\prime }-x^{2} {\mathrm e}^{x} u = 0 \]

21576

\[ {} u^{\prime \prime }-\left (1+x \right ) u^{\prime }+\left (x -1\right ) u = 0 \]

21579

\[ {} y^{\prime } = 1-y+y^{2} {\mathrm e}^{2 x} \]

21580

\[ {} y^{\prime } = {\mathrm e}^{2 x}+\left (2+\frac {5 \,{\mathrm e}^{x}}{2}\right ) y+y^{2} \]

21582

\[ {} y^{\prime } = 1+x +x^{2} \cos \left (x \right )-\left (1+4 x \cos \left (x \right )\right ) y+2 y^{2} \cos \left (x \right ) \]

21584

\[ {} \left (x y^{\prime }-y\right )^{2}-{y^{\prime }}^{2}-1 = 0 \]

21585

\[ {} {y^{\prime }}^{2} \left (x^{2}-1\right )-2 y y^{\prime } x +y^{2}-1 = 0 \]

21586

\[ {} y = x y^{\prime }+{y^{\prime }}^{3} \]

21656

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

21665

\[ {} a_{0} \left (x \right ) y^{\prime \prime }+a_{1} \left (x \right ) y^{\prime }+a_{2} \left (x \right ) y = f \left (x \right ) \]

21669

\[ {} x y^{\prime \prime }+y^{\prime }-\frac {4 y}{x} = x^{3}+x \]

21670

\[ {} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 6 \left (x^{2}+1\right )^{2} \]

21672

\[ {} \left (x^{2}-3 x +1\right ) y^{\prime \prime }-\left (x^{2}-x -2\right ) y^{\prime }+\left (2 x -3\right ) y = x \left (x^{2}-3 x +1\right )^{2} \]

21673

\[ {} x y^{\prime \prime }-\frac {\left (1-2 x \right ) y^{\prime }}{1-x}+\frac {\left (x^{2}-3 x +1\right ) y}{1-x} = \left (1-x \right )^{2} \]

21676

\[ {} y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

21681

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

21690

\[ {} y^{\left (6\right )}+8 y^{\prime \prime \prime } = a \,{\mathrm e}^{x} \]

21716

\[ {} \left (x -1\right )^{2} y^{\prime \prime }-4 \left (x -1\right ) y^{\prime }-14 y = x^{3}-3 x^{2}+3 x -8 \]

21717

\[ {} y^{\prime \prime }+2 y^{\prime }+\left (1-\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0 \]

21720

\[ {} \sin \left (x \right )^{2} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }-k^{2} \cos \left (x \right )^{2} y = 0 \]

21721

\[ {} x^{2} \cos \left (x \right ) y^{\prime \prime }+\left (x \sin \left (x \right )-2 \cos \left (x \right )\right ) \left (x y^{\prime }-y\right ) = 0 \]

21724

\[ {} \frac {x^{2}}{y}+y^{2}-\left (\frac {x^{3}}{y^{2}}+x y+y^{2}\right ) y^{\prime } = 0 \]

21725

\[ {} \left (1-\frac {1}{x}\right ) u^{\prime \prime }+\left (\frac {2}{x}-\frac {2}{x^{2}}-\frac {1}{x^{3}}\right ) u^{\prime }-\frac {u}{x^{4}} = \frac {2}{x}-\frac {2}{x^{2}}-\frac {2}{x^{3}} \]

21726

\[ {} y+\left (1+y^{2} {\mathrm e}^{2 x}\right ) y^{\prime } = 0 \]

21727

\[ {} x y^{\prime \prime }+\left (x +3\right ) y^{\prime }+2 y = 0 \]

21729

\[ {} \frac {{y^{\prime \prime }}^{2}}{{y^{\prime }}^{2}}+\frac {y y^{\prime \prime }}{y^{\prime }}-y^{\prime } = 0 \]

21730

\[ {} \left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x^{2}+4 x -3\right ) y^{\prime }+8 x y = 1 \]

21732

\[ {} n \left (n +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

21743

\[ {} x^{2} y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

21755

\[ {} x^{2} y^{\prime \prime }+y^{\prime }+y = 0 \]

21757

\[ {} y^{\prime \prime } = x y^{2}-y^{\prime } \]

21758

\[ {} x^{\prime \prime }-s x = 0 \]

21767

\[ {} \left (x^{2}+4\right ) y^{\prime \prime }+x y = x +2 \]

21770

\[ {} y^{\prime \prime }+\left (x -1\right ) y = {\mathrm e}^{x} \]

21771

\[ {} \left (x^{2}+2\right ) y^{\prime \prime }+\left (2 x +\frac {2}{x}\right ) y^{\prime }+2 x^{2} y = \frac {4 x^{2}+2 x +10}{x^{4}} \]

21778

\[ {} -b y a +\left (c -\left (1+a +b \right ) x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime } = 0 \]

21780

\[ {} \cos \left (x \right ) u^{\prime \prime }+\sin \left (x \right ) u^{\prime }+\left (\cos \left (x \right )+\sin \left (x \right )\right ) u = 0 \]

21782

\[ {} y^{\prime \prime } = y^{2} {\mathrm e}^{x}-{y^{\prime }}^{2} \]

21783

\[ {} y^{\prime \prime }+3 y^{\prime }+\left (-x^{2}+1\right ) y = \frac {-x^{2}+x}{1+x} \]

21785

\[ {} x^{4} \left (x^{2}+1\right ) \left (x -1\right )^{2} y^{\prime \prime }+4 x^{3} \left (x -1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

21786

\[ {} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y = 0 \]

21800

\[ {} x^{2} y^{\prime \prime }-\left (x +4\right ) y^{\prime }+2 y = 0 \]

21809

\[ {} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

21812

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-p^{2}+x^{2}\right ) y = 0 \]