5.5.1 Problems 1 to 100

Table 5.207: Problems solved by Mathematica only

#

ODE

Mathematica

Maple

Sympy

39

\[ {} y^{\prime } = y^{2}+x^{2}-1 \]

416

\[ {} x^{2} y^{\prime }+y = 0 \]

417

\[ {} x^{3} y^{\prime } = 2 y \]

459

\[ {} x^{2} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+x y = 0 \]

460

\[ {} 3 x^{3} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

472

\[ {} x^{3} \left (1-x \right ) y^{\prime \prime }+\left (2+3 x \right ) y^{\prime }+x y = 0 \]

491

\[ {} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

492

\[ {} x^{3} y^{\prime \prime }-x y^{\prime }+y = 0 \]

1058

\[ {} x^{2} y^{\prime }+y = 0 \]

1059

\[ {} x^{3} y^{\prime } = 2 y \]

2442

\[ {} t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2445

\[ {} \left (-t^{2}+1\right ) y^{\prime \prime }+\frac {y^{\prime }}{\sin \left (t +1\right )}+y = 0 \]

2453

\[ {} t^{3} y^{\prime \prime }-t y^{\prime }-\left (t^{2}+\frac {5}{4}\right ) y = 0 \]

2639

\[ {} t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2642

\[ {} \left (-t^{2}+1\right ) y^{\prime \prime }+\frac {y^{\prime }}{\sin \left (t +1\right )}+y = 0 \]

2659

\[ {} t^{2} y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \]

2913

\[ {} 2 x +y+\left (4 x -2 y+1\right ) y^{\prime } = 0 \]

3034

\[ {} \sec \left (y\right )^{2} y^{\prime } = \tan \left (y\right )+2 x \,{\mathrm e}^{x} \]

3280

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \sin \left (x \right ) \]

3371

\[ {} x^{3} \left (x^{2}+3\right ) y^{\prime \prime }+5 x y^{\prime }-\left (1+x \right ) y = 0 \]

3512

\[ {} y^{\prime \prime }+\frac {y}{z^{3}} = 0 \]

4009

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x \left (x -3\right )}-\frac {y}{x^{3} \left (x +3\right )} = 0 \]

4251

\[ {} \sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

4745

\[ {} 2 y^{\prime } = 2 \sin \left (y\right )^{2} \tan \left (y\right )-x \sin \left (2 y\right ) \]

5294

\[ {} \left (a^{2} x +y \left (x^{2}-y^{2}\right )\right ) y^{\prime }+x \left (x^{2}-y^{2}\right ) = a^{2} y \]

5362

\[ {} {y^{\prime }}^{2}+x^{2} a +b y = 0 \]

5407

\[ {} {y^{\prime }}^{2}+a x y^{\prime }+b \,x^{2}+c y = 0 \]

5568

\[ {} x y {y^{\prime }}^{2}-\left (a -b \,x^{2}+y^{2}\right ) y^{\prime }-b x y = 0 \]

5668

\[ {} x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y = 0 \]

5861

\[ {} a \tan \left (\frac {x}{2}\right )^{2} y-\csc \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

6410

\[ {} 24+12 x y+x^{3} \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right ) = 0 \]

6445

\[ {} y y^{\prime \prime } = y^{3}-f^{\prime }\left (x \right ) y+f \left (x \right ) y^{\prime }+{y^{\prime }}^{2} \]

6446

\[ {} y y^{\prime \prime } = -f \left (x \right ) y^{3}+y^{4}-f \left (x \right ) y^{\prime }+{y^{\prime }}^{2}+y f^{\prime \prime }\left (x \right ) \]

6500

\[ {} a \left (2+a \right )^{2} y y^{\prime \prime } = -a^{2} f \left (x \right )^{2} y^{4}+a^{2} \left (2+a \right ) y^{3} f^{\prime }\left (x \right )+a \left (2+a \right )^{2} f \left (x \right ) y^{2} y^{\prime }+\left (a -1\right ) \left (2+a \right )^{2} {y^{\prime }}^{2} \]

6570

\[ {} y \left (1+a^{2}-2 a^{2} y^{2}\right )+b \sqrt {\left (1-y^{2}\right ) \left (1-a^{2} y^{2}\right )}\, {y^{\prime }}^{2}+\left (1-y^{2}\right ) \left (1-a^{2} y^{2}\right ) y^{\prime \prime } = 0 \]

6604

\[ {} \left (y^{2}-x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime }\right )^{2} = 4 x y \left (x y^{\prime }-y\right )^{3} \]

6606

\[ {} 32 y^{\prime \prime } \left (x y^{\prime \prime }-y^{\prime }\right )^{3}+\left (2 y y^{\prime \prime }-{y^{\prime }}^{2}\right )^{3} = 0 \]

7180

\[ {} x^{4} y^{\prime \prime }+x y^{\prime }+y = 0 \]

7193

\[ {} x^{3} y^{\prime \prime }-\left (2 x -1\right ) y = 0 \]

7197

\[ {} y^{\prime \prime }+\frac {a y}{x^{{3}/{2}}} = 0 \]

7201

\[ {} x^{3} y^{\prime \prime }+y = x^{{3}/{2}} \]

7202

\[ {} 2 x^{2} y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = \sqrt {x} \]

7393

\[ {} s^{\prime } = t \ln \left (s^{2 t}\right )+8 t^{2} \]

7558

\[ {} \sqrt {\frac {y}{x}}+\cos \left (x \right )+\left (\sqrt {\frac {x}{y}}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

7634

\[ {} x^{2} y^{\prime \prime }+3 y^{\prime }-x y = 0 \]

7847

\[ {} x^{3} y^{\prime \prime }+y = 0 \]

8129

\[ {} x^{3} y^{\prime \prime }+y = \frac {1}{x^{4}} \]

8130

\[ {} x y^{\prime \prime }-2 y^{\prime }+y = \cos \left (x \right ) \]

8131

\[ {} y^{\prime }-\frac {y}{x} = \cos \left (x \right ) \]

8150

\[ {} x^{2} y^{\prime \prime }+y^{\prime }+y = 0 \]

8155

\[ {} x^{3} y^{\prime \prime }+\left (1+x \right ) y = 0 \]

8164

\[ {} t^{5} y^{\prime \prime \prime \prime }-t^{3} y^{\prime \prime }+6 y = 0 \]

8510

\[ {} x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y = 0 \]

8518

\[ {} x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (x +5\right ) y = 0 \]

8542

\[ {} x^{4} y^{\prime \prime }+\lambda y = 0 \]

8543

\[ {} x^{3} y^{\prime \prime }+y = 0 \]

8544

\[ {} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

8787

\[ {} \left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime \prime }-2 y^{\prime } \sin \left (x \right )+y \left (\cos \left (x \right )+\sin \left (x \right )\right ) = \left (\cos \left (x \right )-\sin \left (x \right )\right )^{2} \]

8996

\[ {} x^{2} y^{\prime \prime }-5 y^{\prime }+3 x^{2} y = 0 \]

9137

\[ {} \sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

9192

\[ {} x y y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

9372

\[ {} x^{2} y^{\prime } = y \]

9395

\[ {} x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0 \]

9397

\[ {} x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

9403

\[ {} x^{4} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

9413

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

9414

\[ {} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

9467

\[ {} i^{\prime \prime }+2 i^{\prime }+3 i = \left \{\begin {array}{cc} 30 & 0<t <2 \pi \\ 0 & 2 \pi \le t \le 5 \pi \\ 10 & 5 \pi <t <\infty \end {array}\right . \]

9538

\[ {} x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y = 0 \]

9546

\[ {} x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (x +5\right ) y = 0 \]

9571

\[ {} x^{3} y^{\prime \prime }+y = 0 \]

9572

\[ {} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

9673

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+2 z \left (t \right )+{\mathrm e}^{-t}-3 t, y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )+z \left (t \right )+2 \,{\mathrm e}^{-t}+t, z^{\prime }\left (t \right ) = -2 x \left (t \right )+5 y \left (t \right )+6 z \left (t \right )+2 \,{\mathrm e}^{-t}-t] \]

10178

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1+x \]

10179

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x \]

10180

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+x +1 \]

10184

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right ) \]

10185

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right )+1 \]

10187

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \cos \left (x \right )+\sin \left (x \right ) \]

10195

\[ {} 2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = 1 \]

10254

\[ {} y^{\prime }+y = \frac {1}{x} \]

10255

\[ {} y^{\prime }+y = \frac {1}{x^{2}} \]

10257

\[ {} y^{\prime } = \frac {1}{x} \]

10258

\[ {} y^{\prime \prime } = \frac {1}{x} \]

10259

\[ {} y^{\prime \prime }+y^{\prime } = \frac {1}{x} \]

10260

\[ {} y^{\prime \prime }+y = \frac {1}{x} \]

10261

\[ {} y^{\prime \prime }+y^{\prime }+y = \frac {1}{x} \]

11674

\[ {} {y^{\prime }}^{2}+a y+b \,x^{2} = 0 \]

11688

\[ {} {y^{\prime }}^{2}+a x y^{\prime }+b y+c \,x^{2} = 0 \]

11733

\[ {} \left (\operatorname {a2} x +\operatorname {c2} \right ) {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {a0} x +\operatorname {b0} y+\operatorname {c0} = 0 \]

11754

\[ {} \left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x y+x^{2}+2\right ) y^{\prime }+2 y^{2}+1 = 0 \]

11786

\[ {} a x y {y^{\prime }}^{2}-\left (a y^{2}+b \,x^{2}+c \right ) y^{\prime }+b x y = 0 \]

11814

\[ {} {y^{\prime }}^{2} \sin \left (y\right )+2 x y^{\prime } \cos \left (y\right )^{3}-\sin \left (y\right ) \cos \left (y\right )^{4} = 0 \]

11838

\[ {} {y^{\prime }}^{3} x^{3}-3 y {y^{\prime }}^{2} x^{2}+\left (3 x y^{2}+x^{6}\right ) y^{\prime }-y^{3}-2 x^{5} y = 0 \]

11844

\[ {} x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y = 0 \]

12086

\[ {} y^{\prime } = -\frac {\ln \left (x -1\right )-\coth \left (1+x \right ) x^{2}-2 \coth \left (1+x \right ) x y-\coth \left (1+x \right )-\coth \left (1+x \right ) y^{2}}{\ln \left (x -1\right )} \]

12087

\[ {} y^{\prime } = \frac {2 x \ln \left (\frac {1}{x -1}\right )-\coth \left (\frac {1+x}{x -1}\right )+\coth \left (\frac {1+x}{x -1}\right ) y^{2}-2 \coth \left (\frac {1+x}{x -1}\right ) x^{2} y+\coth \left (\frac {1+x}{x -1}\right ) x^{4}}{\ln \left (\frac {1}{x -1}\right )} \]

12207

\[ {} y^{\prime } = \frac {2 a x}{-x^{3} y+2 a \,x^{3}+2 a y^{4} x^{3}-16 y^{2} a^{2} x^{2}+32 x \,a^{3}+2 a y^{6} x^{3}-24 y^{4} a^{2} x^{2}+96 y^{2} x \,a^{3}-128 a^{4}} \]

12215

\[ {} y^{\prime } = \frac {2 y^{6} \left (1+4 x y^{2}+y^{2}\right )}{y^{3}+4 x y^{5}+y^{5}+2+24 x y^{2}+96 x^{2} y^{4}+128 x^{3} y^{6}} \]

12774

\[ {} x^{3} y^{\prime \prime \prime }+\left (a \,x^{2 \nu }+1-\nu ^{2}\right ) x y^{\prime }+\left (b \,x^{3 \nu }+a \left (\nu -1\right ) x^{2 \nu }+\nu ^{2}-1\right ) y = 0 \]