5.5.2 Problems 101 to 185

Table 5.209: Problems solved by Mathematica only

#

ODE

Mathematica

Maple

Sympy

12841

\[ {} y^{\left (5\right )}+a \,x^{\nu } y^{\prime }+a \nu \,x^{\nu -1} y = 0 \]

12923

\[ {} 24+12 x y+x^{3} \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right ) = 0 \]

12937

\[ {} y y^{\prime \prime }+y^{2}-a x -b = 0 \]

12943

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+f \left (x \right ) y^{\prime }-f^{\prime }\left (x \right ) y-y^{3} = 0 \]

12944

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+f^{\prime }\left (x \right ) y^{\prime }-y f^{\prime \prime }\left (x \right )+f \left (x \right ) y^{3}-y^{4} = 0 \]

12947

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}-\left (-1+a y\right ) y^{\prime }+2 a^{2} y^{2}-2 y^{3} b^{2}+a y = 0 \]

12951

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+\left (g \left (x \right )+f \left (x \right ) y^{2}\right ) y^{\prime }-y \left (g^{\prime }\left (x \right )-f^{\prime }\left (x \right ) y^{2}\right ) = 0 \]

12958

\[ {} y y^{\prime \prime }-\frac {\left (a -1\right ) {y^{\prime }}^{2}}{a}-f \left (x \right ) y^{2} y^{\prime }+\frac {a f \left (x \right )^{2} y^{4}}{\left (2+a \right )^{2}}-\frac {a f^{\prime }\left (x \right ) y^{3}}{2+a} = 0 \]

13036

\[ {} \left (y^{2}-1\right ) \left (a^{2} y^{2}-1\right ) y^{\prime \prime }+b \sqrt {\left (1-y^{2}\right ) \left (1-a^{2} y^{2}\right )}\, {y^{\prime }}^{2}+\left (1+a^{2}-2 a^{2} y^{2}\right ) y {y^{\prime }}^{2} = 0 \]

13058

\[ {} \left (y^{2}-x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime }\right )^{2}-4 x y \left (x y^{\prime }-y\right )^{3} = 0 \]

13059

\[ {} 32 y^{\prime \prime } \left (x y^{\prime \prime }-y^{\prime }\right )^{3}+\left (2 y y^{\prime \prime }-{y^{\prime }}^{2}\right )^{3} = 0 \]

13257

\[ {} y^{\prime } = a \,x^{n} y^{2}-a \,x^{n} \left (b \,x^{m}+c \right ) y+b m \,x^{m -1} \]

13314

\[ {} y^{\prime } = b \,{\mathrm e}^{x \mu } y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} b \,{\mathrm e}^{\left (\mu +2 \lambda \right ) x} \]

13322

\[ {} y^{\prime } = a \,{\mathrm e}^{k x} y^{2}+b y+c \,{\mathrm e}^{k n x}+d \,{\mathrm e}^{k \left (2 n +1\right ) x} \]

13334

\[ {} y^{\prime } = a \,x^{n} y^{2}-a b \,x^{n} {\mathrm e}^{\lambda x} y+b \lambda \,{\mathrm e}^{\lambda x} \]

13443

\[ {} y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+a \cos \left (\lambda x \right )^{n} y-a \cos \left (\lambda x \right )^{n -1} \]

13498

\[ {} y^{\prime } = f \left (x \right ) y^{2}-a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x} \]

13767

\[ {} y^{\prime } = -\frac {\left (a x -\frac {6}{25}\right )^{{34}/{9}} y^{3}}{x^{{16}/{9}}}+\frac {\frac {2 a x}{3}-\frac {4}{675}}{x^{{11}/{18}} \left (a x -\frac {6}{25}\right )^{{61}/{18}}} \]

13971

\[ {} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (n \,x^{2}+m x +k \right ) y^{\prime }+\left (k -1\right ) \left (\left (-a k +n \right ) x +m -b k \right ) y = 0 \]

13972

\[ {} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (\left (m -a \right ) x^{2}+\left (2 c m -1\right ) x -c \right ) y^{\prime }+\left (-2 m x +1\right ) y = 0 \]

13973

\[ {} \left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (n \,x^{2}+m x +k \right ) y^{\prime }+\left (-2 \left (a +n \right ) x +1\right ) y = 0 \]

13976

\[ {} x \left (x^{2} a +b x +1\right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y^{\prime }+\left (n x +m \right ) y = 0 \]

14053

\[ {} y^{\prime \prime }+2 k \,{\mathrm e}^{x \mu } y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+k^{2} {\mathrm e}^{2 x \mu }+k \mu \,{\mathrm e}^{x \mu }+c \right ) y = 0 \]

14058

\[ {} y^{\prime \prime }+\left (a +b \,{\mathrm e}^{2 \lambda x}\right ) y^{\prime }+\lambda \left (a -\lambda -b \,{\mathrm e}^{2 \lambda x}\right ) y = 0 \]

14060

\[ {} y^{\prime \prime }+\left (2 \,{\mathrm e}^{\lambda x} a -\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+c \,{\mathrm e}^{x \mu }\right ) y = 0 \]

14065

\[ {} y^{\prime \prime }+\left (2 \,{\mathrm e}^{\lambda x} a -\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{2 x \mu }+c \,{\mathrm e}^{x \mu }+k \right ) y = 0 \]

14066

\[ {} y^{\prime \prime }+\left (2 \,{\mathrm e}^{\lambda x} a +b -\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+a b \,{\mathrm e}^{\lambda x}+c \,{\mathrm e}^{2 x \mu }+d \,{\mathrm e}^{x \mu }+k \right ) y = 0 \]

14071

\[ {} y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +2 b \,{\mathrm e}^{x \mu }-\lambda \right ) y^{\prime }+\left (a b \,{\mathrm e}^{\left (\lambda +\mu \right ) x}+c \,{\mathrm e}^{2 \lambda x}+b^{2} {\mathrm e}^{2 x \mu }+b \left (\mu -\lambda \right ) {\mathrm e}^{x \mu }\right ) y = 0 \]

14187

\[ {} \left (x y^{\prime }-y\right ) \left (y y^{\prime }+x \right ) = a^{2} y^{\prime } \]

14861

\[ {} \left (x^{4}-2 x^{3}+x^{2}\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+x^{2} y = 0 \]

14862

\[ {} \left (x^{5}+x^{4}-6 x^{3}\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

15011

\[ {} x^{\prime } = -x \left (k^{2}+x^{2}\right ) \]

15235

\[ {} y^{\prime } = t \ln \left (y^{2 t}\right )+t^{2} \]

15423

\[ {} x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

15424

\[ {} x^{2} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

15444

\[ {} x y \left (1-{y^{\prime }}^{2}\right ) = \left (-y^{2}-a^{2}+x^{2}\right ) y^{\prime } \]

17820

\[ {} x \left (1+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}+5 y = 0 \]

18234

\[ {} y^{3} y^{\prime \prime } = -1 \]

18851

\[ {} y^{\prime \prime }-\frac {t}{y} = \frac {1}{\pi } \]

19261

\[ {} y^{\prime \prime }-x y^{\prime \prime \prime }+{y^{\prime \prime \prime }}^{3} = 0 \]

19272

\[ {} a^{2} y^{\prime \prime } = 2 x \sqrt {1+{y^{\prime }}^{2}} \]

19411

\[ {} \sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

19696

\[ {} x^{2} y^{\prime } = y \]

19706

\[ {} x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0 \]

19708

\[ {} x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

19714

\[ {} x^{4} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

19722

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

19723

\[ {} y^{\prime \prime }+\frac {n y^{\prime }}{x^{2}}+\frac {q y}{x^{3}} = 0 \]

19865

\[ {} 4 {y^{\prime }}^{3} y-2 x^{2} {y^{\prime }}^{2}+4 y y^{\prime } x +x^{3} = 16 y^{2} \]

20120

\[ {} \left (x y^{\prime }-y\right ) \left (y y^{\prime }+x \right ) = h^{2} y^{\prime } \]

20151

\[ {} \left (x y^{\prime }-y\right ) \left (x -y y^{\prime }\right ) = 2 y^{\prime } \]

20262

\[ {} x^{4} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x} \]

20442

\[ {} \sec \left (y\right )^{2} y^{\prime }+2 x \tan \left (y\right ) = x^{3} \]

20559

\[ {} \left (a {y^{\prime }}^{2}-b \right ) x y+\left (b \,x^{2}-a y^{2}+c \right ) y^{\prime } = 0 \]

20566

\[ {} \left (x y^{\prime }-y\right ) \left (y y^{\prime }+x \right ) = h^{2} y^{\prime } \]

20589

\[ {} a x y {y^{\prime }}^{2}+\left (x^{2}-a y^{2}-b \right ) y^{\prime }-x y = 0 \]

20599

\[ {} \left (x y^{\prime }-y\right ) \left (x -y y^{\prime }\right ) = 2 y^{\prime } \]

20861

\[ {} \left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x y+x^{2}+2\right ) y^{\prime }+2 y^{2}+1 = 0 \]

21016

\[ {} x^{2} \left (x -2\right ) y^{\prime \prime }+4 \left (x -2\right ) y^{\prime }+3 y = 0 \]

21106

\[ {} y^{\prime } = x +\sqrt {1+y^{2}} \]

21743

\[ {} x^{2} y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

21755

\[ {} x^{2} y^{\prime \prime }+y^{\prime }+y = 0 \]

21771

\[ {} \left (x^{2}+2\right ) y^{\prime \prime }+\left (2 x +\frac {2}{x}\right ) y^{\prime }+2 x^{2} y = \frac {4 x^{2}+2 x +10}{x^{4}} \]

21800

\[ {} x^{2} y^{\prime \prime }-\left (x +4\right ) y^{\prime }+2 y = 0 \]

21816

\[ {} x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 x y^{\prime }-8 y = 4 \ln \left (x \right ) \]

21817

\[ {} x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+x y^{\prime }-y = -\ln \left (x \right ) \]

21845

\[ {} y^{\prime \prime }+4 y = 0 \]

22289

\[ {} x^{2} y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

22294

\[ {} x^{3} y^{\prime \prime }+y = 0 \]

22297

\[ {} \left (1+x \right )^{3} y^{\prime \prime }+\left (x^{2}-1\right ) \left (1+x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

22539

\[ {} y^{\prime } = \frac {2 \sin \left (2 x \right )-\tan \left (y\right )}{x \sec \left (y\right )^{2}} \]

22615

\[ {} y^{\prime \prime } = -\frac {4}{y^{3}} \]

23410

\[ {} y^{\prime \prime } \cos \left (x \right )+3 y = 1 \]

23789

\[ {} x^{3} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }+x y = 0 \]

23799

\[ {} x^{2} y^{\prime \prime }+\left (1-x \right ) y^{\prime }+2 y = 0 \]

23801

\[ {} x^{3} y^{\prime \prime }-\left (1+x \right ) y = 0 \]

24209

\[ {} x^{4} y^{\prime \prime \prime }+\frac {x^{2} y^{\prime \prime }}{1+x}-\left (1+x \right ) y = 0 \]

24210

\[ {} x^{4} y^{\prime \prime \prime }-\frac {x^{2} y^{\prime }}{1+x}+y = 0 \]

24212

\[ {} x^{2} y^{\prime }-y = 0 \]

24350

\[ {} x^{n +1} y^{n}+a y+\left (x^{n} y^{n +1}+a x \right ) y^{\prime } = 0 \]

25003

\[ {} 2 y^{\prime \prime } = \sin \left (2 y\right ) \]

25004

\[ {} 2 y^{\prime \prime } = \sin \left (2 y\right ) \]

25405

\[ {} 3 y+y^{\prime } = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t <\infty \end {array}\right . \]

25409

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le t <2 \\ 4 & 2\le t <\infty \end {array}\right . \]

25454

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{t}+\frac {\left (1-t \right ) y}{t^{3}} = 0 \]