4.1.99 Problems 9801 to 9900

Table 4.197: First order ode

#

ODE

Mathematica

Maple

Sympy

24340

\[ {} y \left (x^{2} y^{2}-m \right )+x \left (x^{2} y^{2}+n \right ) y^{\prime } = 0 \]

24341

\[ {} x \left (x^{2}-y^{2}-x \right )-y \left (x^{2}-y^{2}\right ) y^{\prime } = 0 \]

24342

\[ {} y \left (y+x^{2}\right )+x \left (x^{2}-2 y\right ) y^{\prime } = 0 \]

24343

\[ {} y \left (x^{3} y^{3}+2 x^{2}-y\right )+x^{3} \left (x y^{3}-2\right ) y^{\prime } = 0 \]

24344

\[ {} y \left (2-3 x y\right )-x y^{\prime } = 0 \]

24345

\[ {} y \left (y^{2}+2 x \right )+x \left (-x +y^{2}\right ) y^{\prime } = 0 \]

24346

\[ {} y+2 \left (y^{4}-x \right ) y^{\prime } = 0 \]

24347

\[ {} y \left (3 x^{3}-x +y\right )+x^{2} \left (-x^{2}+1\right ) y^{\prime } = 0 \]

24348

\[ {} 2 x^{5} y^{\prime } = y \left (3 x^{4}+y^{2}\right ) \]

24349

\[ {} x^{n} y^{n +1}+a y+\left (x^{n +1} y^{n}+b x \right ) y^{\prime } = 0 \]

24350

\[ {} x^{n +1} y^{n}+a y+\left (x^{n} y^{n +1}+a x \right ) y^{\prime } = 0 \]

24351

\[ {} x^{4}+2 y-x y^{\prime } = 0 \]

24352

\[ {} 3 x y+3 y-4+\left (1+x \right )^{2} y^{\prime } = 0 \]

24353

\[ {} y^{\prime } = \csc \left (x \right )-y \cot \left (x \right ) \]

24354

\[ {} t x^{\prime } = 6 t \,{\mathrm e}^{2 t}+x \left (2 t -1\right ) \]

24355

\[ {} y^{\prime } = x -3 y \]

24356

\[ {} \left (3 x -1\right ) y^{\prime } = 6 y-10 \left (3 x -1\right )^{{1}/{3}} \]

24357

\[ {} y-2+\left (3 x -y\right ) y^{\prime } = 0 \]

24358

\[ {} 2 x y+x^{2}+x^{4}-\left (x^{2}+1\right ) y^{\prime } = 0 \]

24359

\[ {} y^{\prime } = x -2 x y \]

24360

\[ {} y-\cos \left (x \right )^{2}+\cos \left (x \right ) y^{\prime } = 0 \]

24361

\[ {} y^{\prime } = x -2 y \cot \left (2 x \right ) \]

24362

\[ {} y-x +x y \cot \left (x \right )+x y^{\prime } = 0 \]

24363

\[ {} y^{\prime }-m y = c \,{\mathrm e}^{m x} \]

24364

\[ {} y^{\prime }-m_{2} y = c \,{\mathrm e}^{m_{1} x} \]

24365

\[ {} v+\left (2 x +1-v x \right ) v^{\prime } = 0 \]

24366

\[ {} x \left (x^{2}+1\right ) y^{\prime }+2 y = \left (x^{2}+1\right )^{3} \]

24367

\[ {} 2 x \left (y-x^{2}\right )+y^{\prime } = 0 \]

24368

\[ {} 1+x y-\left (x^{2}+1\right ) y^{\prime } = 0 \]

24369

\[ {} 2 y = \left (x^{2}-1\right ) \left (1-y^{\prime }\right ) \]

24370

\[ {} 1-\left (1+2 x \tan \left (y\right )\right ) y^{\prime } = 0 \]

24371

\[ {} \left (\cos \left (x \right )+1\right ) y^{\prime } = \sin \left (x \right ) \left (\sin \left (x \right )+\cos \left (x \right ) \sin \left (x \right )-y\right ) \]

24372

\[ {} y^{\prime } = 1+3 y \tan \left (x \right ) \]

24373

\[ {} \left (a^{2}+x^{2}\right ) y^{\prime } = 2 x \left (\left (a^{2}+x^{2}\right )^{2}+3 y\right ) \]

24374

\[ {} \left (x +a \right ) y^{\prime } = b x -n y \]

24375

\[ {} \left (x +a \right ) y^{\prime } = b x \]

24376

\[ {} \left (x +a \right ) y^{\prime } = b x +y \]

24377

\[ {} \left (2 x +3\right ) y^{\prime } = y+\sqrt {2 x +3} \]

24378

\[ {} y^{\prime } = x^{3}-2 x y \]

24379

\[ {} L i^{\prime }+R i = e \]

24380

\[ {} L i^{\prime }+R i = e \sin \left (w t \right ) \]

24381

\[ {} y^{\prime } = 4 x -2 y \]

24382

\[ {} y^{\prime } = 4 x -2 y \]

24383

\[ {} \left (t^{2}+1\right ) s^{\prime }+2 t \left (s t^{2}-3 \left (t^{2}+1\right )^{2}\right ) = 0 \]

24384

\[ {} y^{\prime } = {\mathrm e}^{x +y} \]

24385

\[ {} x y^{\prime }+x +y = 0 \]

24386

\[ {} y^{2}-x \left (2 x +3 y\right ) y^{\prime } = 0 \]

24387

\[ {} x^{2}+1+x^{2} y^{2} y^{\prime } = 0 \]

24388

\[ {} x^{3}+y^{3}+y^{2} \left (3 x +k y\right ) y^{\prime } = 0 \]

24389

\[ {} x y^{\prime } = x^{2} y^{2}+2 y \]

24390

\[ {} y^{\prime }-\cos \left (x \right ) = \tan \left (y\right )^{2} \cos \left (x \right ) \]

24391

\[ {} \cos \left (x \right ) y^{\prime } = 1-y-\sin \left (x \right ) \]

24392

\[ {} \sin \left (\theta \right ) r^{\prime } = -1-2 r \cos \left (\theta \right ) \]

24393

\[ {} y \left (3 y+x \right )+x^{2} y^{\prime } = 0 \]

24394

\[ {} y^{\prime } = \sec \left (x \right )^{2} \sec \left (y\right )^{3} \]

24395

\[ {} \left (2 x^{3}-x^{2} y+y^{3}\right ) y-x \left (y^{3}+2 x^{3}\right ) y^{\prime } = 0 \]

24396

\[ {} x y^{\prime } = y \left (2 x y+1\right ) \]

24397

\[ {} x y+\sqrt {x^{2}+1}\, y^{\prime } = 0 \]

24398

\[ {} x -y \cos \left (\frac {y}{x}\right )+x y^{\prime } \cot \left (\frac {y}{x}\right ) = 0 \]

24399

\[ {} y \left (x^{2}+y^{2}\right )+x \left (3 x^{2}-5 y^{2}\right ) y^{\prime } = 0 \]

24400

\[ {} y^{\prime }+a y = b \]

24401

\[ {} x -y-\left (x +y\right ) y^{\prime } = 0 \]

24402

\[ {} x^{\prime } = \cos \left (x\right ) \cos \left (t \right )^{2} \]

24403

\[ {} \left (x \cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }-\sin \left (x \right ) y+\sin \left (y\right ) = 0 \]

24404

\[ {} 1+4 x y-4 x^{2} y+\left (-x^{3}+x^{2}\right ) y^{\prime } = 0 \]

24405

\[ {} 3-2 x y-\left (x^{2}+\frac {1}{y^{2}}+\frac {1}{y}\right ) y^{\prime } = 0 \]

24406

\[ {} 3 x \left (y-1\right )+y+2+x y^{\prime } = 0 \]

24407

\[ {} x y \left (1-y^{\prime }\right ) = x^{2} y^{\prime }+y^{2} \]

24408

\[ {} a^{2} \left (y^{\prime }-1\right ) = x^{2} y^{\prime }+y^{2} \]

24409

\[ {} y-\sin \left (x \right )^{2}+y^{\prime } \sin \left (x \right ) = 0 \]

24410

\[ {} x -y+\left (3 x +y\right ) y^{\prime } = 0 \]

24411

\[ {} y = \left (2 x +1\right ) \left (1-y^{\prime }\right ) \]

24412

\[ {} y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}} = 0 \]

24413

\[ {} y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}} = 0 \]

24414

\[ {} \sqrt {1-y^{2}}-y^{\prime } \sqrt {-x^{2}+1} = 0 \]

24415

\[ {} \sqrt {1-y^{2}}-y^{\prime } \sqrt {-x^{2}+1} = 0 \]

24416

\[ {} v-\left ({\mathrm e}^{v}+2 u v-2 u \right ) v^{\prime } = 0 \]

24417

\[ {} y \left (y \,{\mathrm e}^{x y}+1\right )+\left (x y \,{\mathrm e}^{x y}+{\mathrm e}^{x y}+x \right ) y^{\prime } = 0 \]

24418

\[ {} y^{2}-\left (2+x y\right ) y^{\prime } = 0 \]

24419

\[ {} x^{2}-2 x y-y^{2}-\left (x^{2}+2 x y-y^{2}\right ) y^{\prime } = 0 \]

24420

\[ {} y^{2}+\left (x y+y^{2}-1\right ) y^{\prime } = 0 \]

24421

\[ {} y \left (y^{2}-3 x^{2}\right )+x^{3} y^{\prime } = 0 \]

24422

\[ {} y^{\prime } = \cos \left (x \right )-y \sec \left (x \right ) \]

24423

\[ {} y^{\prime } = 3 x +y \]

24424

\[ {} y^{\prime } = 3 x +y \]

24425

\[ {} y^{\prime } = \cos \left (x \right )+y \tan \left (x \right ) \]

24426

\[ {} x^{2}-1+2 y+y^{\prime } \left (-x^{2}+1\right ) = 0 \]

24427

\[ {} x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

24428

\[ {} y^{\prime } \left (-x^{2}+1\right ) = 1-x y-3 x^{2}+2 x^{4} \]

24429

\[ {} y^{2}+y-\left (y^{2}+2 x y+x \right ) y^{\prime } = 0 \]

24430

\[ {} -x^{3}+y^{3} = x y \left (y y^{\prime }+x \right ) \]

24431

\[ {} y \left (x^{2} y^{2}+x^{2}+y^{2}\right )+x \left (x^{2}+y^{2}-x^{2} y^{2}\right ) y^{\prime } = 0 \]

24432

\[ {} 3 x -2 y+1+\left (3 x -2 y+3\right ) y^{\prime } = 0 \]

24433

\[ {} \sin \left (y\right ) \left (x +\sin \left (y\right )\right )+2 x^{2} \cos \left (y\right ) y^{\prime } = 0 \]

24434

\[ {} y^{\prime } = \left (9 x +4 y+1\right )^{2} \]

24435

\[ {} y^{\prime } = y-x y^{3} {\mathrm e}^{-2 x} \]

24436

\[ {} y^{\prime } = \sin \left (x +y\right ) \]

24437

\[ {} x y+\left (x^{2}-3 y\right ) y^{\prime } = 0 \]

24438

\[ {} \left (3 \tan \left (x \right )-2 \cos \left (y\right )\right ) \sec \left (x \right )^{2}+\tan \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

24439

\[ {} x +2 y-1+\left (2 x +4 y-3\right ) y^{\prime } = 0 \]