| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime \prime }+8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+5 y^{\prime \prime }+5 y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}-64 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right )+x \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = {\mathrm e}^{2 x} \sin \left (2 x \right )+2 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime } = x^{2}+x \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+2 y^{\prime \prime } = 7 x -3 \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = \sin \left (x \right ) \cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-3 y^{\prime \prime \prime }+y = 9 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 48 x \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime } = 9 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}+4 y^{\prime \prime \prime } = 7+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+16 y = 64 \cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }-y = 44 \sin \left (3 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime }+5 y^{\prime }+5 y = 5 \cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = 4 \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y^{\prime \prime } = 2 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 15 \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 40 \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x}+5 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 10 \,{\mathrm e}^{x} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime }-4 y = 50 \,{\mathrm e}^{2 x}+50 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 12 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 32 \,{\mathrm e}^{2 x}+16 x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 72 \,{\mathrm e}^{3 x}+729 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 9 x^{2} \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 10 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 120 \,{\mathrm e}^{3 t} \operatorname {Heaviside}\left (t -1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 40 t^{2} \operatorname {Heaviside}\left (t -2\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y = \left (2 t^{2}+t +1\right ) \delta \left (t -1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = \cos \left (x \right )+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right )+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = \sin \left (x \right )^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = y+x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = x \,{\mathrm e}^{x}+\cos \left (x \right )^{2}+y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a y+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = x y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime } = x^{3}+\cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-2 y^{\prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-2 y^{\prime }+y^{\prime \prime \prime } = {\mathrm e}^{x} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime \prime } = 3 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime \prime } = x^{2} {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -4 y^{\prime }+y^{\prime \prime \prime } = -3 \,{\mathrm e}^{2 x}+x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-7 y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = a^{2} y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 x y^{\prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a y+2 a x y^{\prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} f^{\prime }\left (x \right ) y+2 f \left (x \right ) y^{\prime }+y^{\prime \prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime }-y^{\prime \prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+y^{\prime }-y^{\prime \prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -3 y+y^{\prime }+y^{\prime \prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+4 y^{\prime }+y^{\prime \prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+2 y^{\prime }+y^{\prime \prime }+y^{\prime \prime \prime } = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -15 y-7 y^{\prime }+y^{\prime \prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = \left (x -1\right ) x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = \sinh \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -3 y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -3 y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 3 x^{2}+\sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -3 y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = {\mathrm e}^{-x}+3 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 10 y+3 y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 a^{2} y-a^{2} y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 a^{2} y-a^{2} y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = \sinh \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-3 y = \cosh \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = x \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = x \left (1-x^{2} {\mathrm e}^{x}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = \left (-x^{2}+2\right ) {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = {\mathrm e}^{x}+\cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -4 y+6 y^{\prime }-4 y^{\prime \prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = x^{2} {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -a^{3} y+3 a^{2} y^{\prime }-3 a y^{\prime \prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -a^{3} y+3 a^{2} y^{\prime }-3 a y^{\prime \prime }+y^{\prime \prime \prime } = {\mathrm e}^{a x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = a y^{\prime \prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \operatorname {a3} y+\operatorname {a2} y^{\prime }+\operatorname {a1} y^{\prime \prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -8 a x y-2 \left (-4 x^{2}-2 a +1\right ) y^{\prime }-6 x y^{\prime \prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a^{3} x^{3} y+3 a^{2} x^{2} y^{\prime }+3 a x y^{\prime \prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|