1.3.1 Miscellaneous PDE’s

Table 1.6: Miscellaneous PDE’s breakdown of results. Time in seconds

#

PDE

description

Mathematica
Maple

hand solved?

Animated?





result

time

result

time

1

General first order

Transport equation \(u_t+ u_x = 0\)

0.046

0.085

Yes

2

General first order

Transport equation \(u_t-3 u_x = 0\) IC \(u(0,x)=e^{-x^2}\). Peter Olver textbook, 2.2.2 (a)

0.007

0.046

Yes

Yes

3

General first order

Transport equation \(u_t+2 u_x = 0\) IC \(u(-1,x)=\frac {x}{1+x^2}\). Peter Olver textbook, 2.2.2 (b)

0.006

0.02

Yes

Yes

4

General first order

Transport equation \(u_t+u_x+\frac {1}{2}u = 0\) IC \(u(0,x)=\arctan (x)\). Peter Olver textbook, 2.2.2 (c)

0.005

0.05

Yes

Yes

5

General first order

Transport equation \(u_t-4u_x+u = 0\) IC \(u(0,x)=\frac {1}{1+x^2}\). Peter Olver textbook, 2.2.2 (d)

0.005

0.02

Yes

Yes

6

General first order

Transport equation \(u_t+2 u_x= \sin x\) IC \(u(0,x)=\sin x\). Peter Olver textbook, 2.2.5

0.073

0.046

Yes

Yes

7

General first order

Transport equation \(u_t+\frac {1}{1+x^2} u_x= 0\) IC \(u(x,0)=\frac {1}{1+(3+x)^2}\). Peter Olver textbook, page 27

0.023

0.077

Yes

Yes

8

General first order

Transport equation \(u_t-x u_x= 0\) IC \(u(x,0)=\frac {1}{1+x^2}\). Peter Olver textbook, problem 2.2.17

0.006

0.05

Yes

Yes

9

General first order

Transport equation \(u_t+(1-2 t) u_x= 0\) IC \(u(x,0)=\frac {1}{1+x^2}\). Peter Olver textbook, problem 2.2.29

0.032

0.135

Yes

Yes

10

General first order

Transport equation \(u_t+\frac {1}{x^2+4} u_x= 0\) IC \(u(x,0)=e^{x^3+12 x}\)

0.015

0.072

Yes

Yes

11

General first order

\(3 u_x + 5 u_y = x\)

0.007

0.011

Yes

12

General first order

\(x u_y + y u_x = -4 x y u\) and \(u(x,0)=e^{-x^2}\)

0.024

0.058

Yes

13

General first order

\(u_t + u_x = 0\) and \(u(x,0)=\sin x\) and \(u(0,t)=0\)

0.121

0.303

Yes

14

General first order

\(u_t+ c u_x = 0\) and \(u(x,0)=e^{-x^2}\)

0.005

0.03

Yes

15

General first order

(Haberman 12.2.2) \(\omega _t -3 \omega _x = 0\) and \(\omega (x,0)=\cos x\)

0.004

0.022

Yes

16

General first order

(Haberman 12.2.4) \(\omega _t +c \omega _x = 0\) and \(\omega (x,0)=f(x)\) and \(\omega (0,t)=h(t)\)

1.705


Solution contains unresolved invlaplace calls

0.32

Yes

17

General first order

(Haberman 12.2.5 (a)) \(\omega _t +c \omega _x = e^{2 x}\) and \(\omega (x,0)=f(x)\)

0.048

0.042

Yes

18

General first order

(Haberman 12.2.5 (d)) \(\omega _t +3 t \omega _x = \omega (x,t)\) and \(\omega (x,0)=f(x)\)

1.118

0.062

Yes

19

General first order

\( 2 u_x + 5 u_y = u^2(x,y) + 1\)

0.16

0.039

Yes

20

General first order

Clairaut equation \(x u_x + y u_y + \frac {1}{2} ( (u_x)^2+ (u_y)^2 ) = 0\)

0.054

0.126

Yes

21

General first order

Clairaut equation. \(x u_x + y u_y + \frac {1}{2} ( (u_x)^2+ (u_y)^2 ) = 0\) with \(u(x,0)= \frac {1}{2} (1-x^2)\)

0.014

0.724

22

General first order

Clairaut equation. \(u = x u_x+ y u_y + \sin ( u_x + u_y )\)

0.054

0.134

23

General first order

Recover a function from its gradient vector

0.032

0.085

24

General first order

\(x f_y - f_x = \frac {g(x)}{h(y)} f^2\)

0.055

0.039

Yes

25

General first order

\(f_x + (f_y)^2 = f(x,y,z)+z\)

0.132

0.562

26

General first order

\(x u_x+y u_y=u\) (Example 3.5.1 in Lokenath Debnath)

0.017

0.01

Yes

27

General first order

\(x u_x+y u_y=n u\) Example 3.5.2 in Lokenath Debnath

0.018

0.012

Yes

28

General first order

\(x^2 u_x+y^2 u_y=(x+y) u\) Example 3.5.3 in Lokenath Debnath

0.12

0.027

Yes

29

General first order

\((y-z) u_x + (z-x) u_y + (x-y) u_z = 0\) (Example 3.5.4 in Lokenath Debnath)

(Timed out)

600.

2.163

Yes

30

General first order

\(u(x+y) u_x+u(x-y) u_y=x^2+y^2\) (Example 3.5.5 in Lokenath Debnath)

0.489

0.174

Yes

31

General first order

\(u_x-u_y=1\) with \(u(x,0)=x^2\) Example 3.5.6 in Lokenath Debnath

0.005

0.018

32

General first order

\(y u_x+x u_y=u\) with \(u(x,0)=x^3\) and \(u(0,y)=y^3\) Example 3.5.8 in Lokenath Debnath

2.078

0.679

33

General first order

\(x u_x+y u_y=x e^{-u}\) with \(u=0\) on \(y=x^2\) Example 3.5.10 in Lokenath Debnath

0.235

0.06

34

General first order

\(u_t+u u_x=x\) with \(u(x,0)=f(x)\) Example 3.5.11 in Lokenath Debnath.

3.678

0.24

35

General first order

\(u_x=0\) Problem 3.3(a) Lokenath Debnath

0.004

0.003

36

General first order

\(a u_x+b u_y=0\) Problem 3.3(b) Lokenath Debnath

0.009

0.009

37

General first order

\(u_x+y u_y=0\) Problem 3.3(c) Lokenath Debnath

0.029

0.011

38

General first order

\((1+x^2) u_x+ u_y=0\) Problem 3.3(d) Lokenath Debnath

0.009

0.009

39

General first order

\(2 x y u_x+(x^2+y^2)u_y=0\) Problem 3.3(e) Lokenath Debnath

0.126

0.024

40

General first order

\((y+u) u_x+y u_y=x-y\) Problem 3.3(f) Lokenath Debnath

105.34

0.37

41

General first order

\(y^2 u_x- x y u_y=x(u-2 y)\) Problem 3.3(g) Lokenath Debnath

0.137

0.037

42

General first order

\(y u_y - x u_x = 1\) Problem 3.3(h) Lokenath Debnath

0.02

0.009

43

General first order

\(u_x+2 x y^2 u_y=0\) Problem 3.4 Lokenath Debnath

0.126

0.011

44

General first order

\(3 u_x+2 u_y=0\) with \(u(x,0)=\sin x\). Problem 3.5(a) Lokenath Debnath

0.005

0.016

45

General first order

\(y u_x+x u_y=0\) with \(u(0,y)=e^{-y^2}\). Problem 3.5(b) Lokenath Debnath

0.023

0.028

46

General first order

\(x u_x+y u_y=2 x y\) with \(u=2\) on \(y=x^2\). Problem 3.5(c) Lokenath Debnath

0.017

0.009

47

General first order

\(u_x+x u_y=0\) with \(u(0,y)=\sin y\). Problem 3.5(d) Lokenath Debnath

0.006

0.017

48

General first order

\(y u_x+x u_y=x y\) with \(u(0,y)=e^{-y^2},u(x,0)=e^{-x^2}\). Problem 3.5(e) Lokenath Debnath

3.803

0.616

49

General first order

\(u_x+x u_y=(y-\frac {1}{2}x^2)^2\) with \(u(0,y)=e^{y}\). Problem 3.5(f) Lokenath Debnath

0.012

0.079

50

General first order

\(x u_x+y u_y=u+1\) with \(u=x^2\) on \(y=x^2\) Problem 3.5(g) Lokenath Debnath

0.021

0.012

51

General first order

\(u u_x - u u_y= u^2 + (x+y)^2\) with \(u(x,0)=1\) Problem 3.5(h) Lokenath Debnath

0.065

0.07

52

General first order

\(x u_x+(x+y)u_y=u+1\) with \(u(x,0)=x^2\) Problem 3.5(i) Lokenath Debnath

0.027

0.054

53

General first order

\(x u_x+y u_y+z u_z=0\) Problem 3.8(a) .Lokenath Debnath

0.032

0.013

54

General first order

\(x^2 u_x+y^2 u_y+z(x+y)u_z=0\) Problem 3.8(b) Lokenath Debnath

0.12

0.019

55

General first order

\(x(y-z)u_x+y(z-x)u_y+z(x-y)u_z=0\) Problem 3.8(c) Lokenath Debnath

0.049

0.934

56

General first order

\(y z u_x - x z u_y+ x y (x^2+y^2) u_z=0\) Problem 3.8(d) Lokenath Debnath

0.114

0.044

57

General first order

\(x(y^2-z^2) u_x + y(z^2-y^2) u_y+ z (x^2-y^2) u_z=0\) Problem 3.8(e) Lokenath Debnath

45.677

0.256

58

General first order

\(u_x+x u_y=y\) with \(u(0,y)=y^2\) Problem 3.9(a) Lokenath Debnath

0.007

0.021

59

General first order

\(u_x+x u_y=y\) with \(u(1,y)=2 y\) Problem 3.9(b) Lokenath Debnath

0.007

0.01

60

General first order

\((u_x+u_y)^2-u^2=0\). Problem 3.10 Lokenath Debnath

0.011

0.021

61

General first order

\((y+u)u_x+y u_y=x-y\) with \(u(x,1)=1+x\). Problem 3.11 Lokenath Debnath

211.318

0.913

62

General first order

\(2 x u_x+(x+1) u_y=y\) with \(u(1,y)=2 y\). Problem 3.14(d) Lokenath Debnath

0.021

0.154

63

General first order

\(x u_x+y u_y=x^2+y^2\) with \(u(x,1)=x^2\). Problem 3.14(e) Lokenath Debnath

0.034

0.042

64

General first order

\(y^2 u_x+(x y) u_y=x\) with \(u(x,1)=x^2\). Problem 3.14(f) Lokenath Debnath

0.035

0.045

65

General first order

\(x u_x+y u_y=x y\) with \(u=\frac {x^2}{2}\) at \(y=x\). Problem 3.14(g) Lokenath Debnath

0.019

0.012

66

General first order

\(u_x+u u_y=1\) with \(u(0,y)=a y\). Problem 3.16(a) Lokenath Debnath

0.084

0.045

67

General first order

\((y+u)u_x+(x+u)u_y=x+y\). Problem 3.17(a) Lokenath Debnath

(Timed out)

600.

1.518

68

General first order

\(x u(u^2+x y)u_x - y u(u^2+x y) u_y = x^4\). Problem 3.17(b) Lokenath Debnath

0.065

0.044

69

General first order

\((x+y) u_x + (x-y)u_y =0\). Problem 3.17(c) Lokenath Debnath

0.057

0.047

70

General first order

\(y u_x - x u_y = e^u\) with \(u(0,y)=y^2-1\)

0.163

0.098

Yes

71

General first order

\(y u_x - x u_y = e^u\)

0.074

0.004

Yes

72

General first order

\(u_t + x u_x = 0\) with \(u(x,0)=x^2\). Math 5587

0.007

0.023

Yes

73

General first order

\(u_t + t u_x = 0\) with \(u(x,0)=e^x\)

0.02

0.03

Yes

74

General first order

\(2 u_x + 3 u_y = 1\)

0.008

0.009

Yes

75

General first order

\(x u_t - t u_x = 0\)

0.027

0.011

Yes

76

General first order

\(u_t + u_x = 0\) with \(u(x,1)=\frac {x}{1+x^2}\)

0.005

0.01

Yes

77

General first order

\(u_x u_y = 1\)

0.003

0.018

Yes

78

General first order

\(u_x u_y = u\) with \(u(x,0)=0,u(0,y)=0\)

1.493

0.272

Yes

79

Solved by factoring into two transport equations

\(u_{xx} + u_{xt} - 6 u_{tt} = 0\)

0.012

0.102

Yes

80

Solved by factoring into two transport equations

\(u_{xx} - u_{xt} - 12 u_{tt} = 0\)

0.013

0.298

Yes

81

Solved by factoring into two transport equations

\(u_{xx} - 3 u_{xt} - 4 u_{tt} = 0\)

0.013

2.132

Yes

82

Solved by factoring into two transport equations

\(u_{tt} - 2 u_{xt} - 3 u_{xx} = 0\) with \(u(0,x)=x^2, u_t(x,0)=e^x\)

0.018

1.895

83

Schrodinger PDE

pict

Logan textbook, page 30

0.527

0.472

84

Schrodinger PDE

pict

In a square, zero potential

0.707

4.106

85

Schrodinger PDE

pict

From Mathematica help pages

0.756

0.929

86

Schrodinger PDE

pict

From Mathematica help pages

0.006


Trivial solution. Maple does not support \(\infty \) in boundary conditions

9.75

87

Schrodinger PDE

pict

David Griffiths, page 47

30.831

2.01

88

Schrodinger PDE

pict

David Griffiths, page 47

0.678

1.058

89

Schrodinger PDE

pict

In a square

0.648

6.622

90

Beam PDE

Beam PDE \(u_{tt} + u_{xxxx} = 0\)

1.711

0.234

91

Burger’s PDE

Inviscid Burgers \(u_x + u u_y = 0\)


Implicit solution

0.028

0.026

Yes

92

Burger’s PDE

Inviscid Burgers with I.C. \(u_x+ u u_y = 0\) and \(u(x,0)=\frac {1}{x+1}\)

0.011

0.062

Yes

93

Burger’s PDE

\(u_t+ u u_x = \mu u_{xx}\)

0.039

0.112

94

Burger’s PDE

\(u_t + u u_x + \mu u_{xx}\) with IC

10.918

0.92

95

Burger’s PDE

\(u_t + u u_x + \mu u_{xx}\) IC as UnitBox

39.853

0.658

96

Black Scholes PDE

classic Black Scholes model from finance, European call version

3.061

1.014

97

Black Scholes PDE

Boundary value problem for the Black Scholes equation

4.421

2.492

98

Korteweg-deVries PDE

\(u_{xxx} + u_t -6 u u_x = 0\)

0.031

0.193

99

Tricomi PDE

\(u_{xx} + y u_{yy} = 0\) with \(u(x,0)=0,u_y(x,0)=x^2\)

9.736

3.933

100

Tricomi PDE

\(u_{xx} + x u_{yy} = 0\)

0.011

3.122

101

Keldysh equation

\(x u_{xx} + u_{yy} = 0\)

0.007

3.77

102

Euler-Poisson-Darboux equation

\(u_{xx} + u_{yy} + \frac {\beta }{x} u_x = 0\)

0.008

0.117

103

Euler-Poisson-Darboux equation

\(u_{xx} - u_{yy} + \frac {\beta }{x} u_x = 0\)

0.008

0.49

104

Euler-Poisson-Darboux equation

\(u_{tt} - u_{xx} - \frac {2}{x} u_x = 0\) with \(u(x,0)=0,u_t(x,0)=g(x)\)

2.613

5.677

105

Chaplygin’s equation

\(u_{\theta \theta }+\frac {v^2}{1-\frac {v^2}{c^2}} u_{vv} + v u_v=0\)

0.027

1.459

106

Cauchy Riemann PDE’s

Cauchy Riemann PDE with Prescribe the values of \(u\) and \(v\) on the \(x\) axis

0.011

0.177

107

Cauchy Riemann PDE’s

Cauchy Riemann PDE With extra term on right side

0.003

0.077

108

Hamilton-Jacobi PDE

Hamilton-Jacobi type PDE

0.01

0.237

109

Airy PDE

\(u_t + u_{xxx} = 0\)

0.059

0.104

Yes

110

Nonlinear PDE’s

Bateman-Burgers \(u_t+u u_x = \nu u_{xx}\)

0.03

0.081

111

Nonlinear PDE’s

Benjamin Bona Mahony \(u_t+u_x + u u+x - u_{xxt} = 0\)

0.036

0.092

112

Nonlinear PDE’s

Benjamin Ono \(u_t+H u_{xx} +u u_x = 0\)

0.031

0.078

113

Nonlinear PDE’s

Born Infeld \((1-u_t^2) u_{xx} + 2 u_x u_t u_{xt} - (1+ u_x^2) u_{tt}=0\)

0.014

0.163

114

Nonlinear PDE’s

Boussinesq \(u_{tt}-u_{xx}-u_{xxxx} - 3 (u^2)_{xx} = 0\)

0.058

0.11

115

Nonlinear PDE’s

Boussinesq type \(u_{tt}-u_{xx}-2 \alpha (u u_x)_x - \beta u_{xxtt} = 0\)

0.048

0.402

116

Nonlinear PDE’s

Buckmaster \( u_t = (u^4)_{xx} + (u^3)_x\)

0.113


Answer in terms of RootOf.

0.465

117

Nonlinear PDE’s

Camassa Holm \(u_t + 2 k u_x - u_{xxt} + 3 u u_x = 2 u_x u_{xx}+ u u_{xxx}\)

0.199


Answer in terms of RootOf.

1.628

118

Nonlinear PDE’s

Chaffee Infante \(u_t = u_{xx} + \lambda (u^3 - u) = 0\)

0.105

0.226

119

Nonlinear PDE’s

Clarke. \(\left ( \theta _t - \gamma e^\theta \right )_{tt} = \left ( \theta _t - e^\theta \right )_{xx}\)

0.013

0.06

120

Nonlinear PDE’s

Degasperis Procesi \(u_t - u_{xxt} + 4 u u_x = 3 u_x u_xx + u u_{xxx}\)

0.195


But still has unresolved ODE’s in solution

0.671

121

Nonlinear PDE’s

Dym equation \(u_t =u^3 u_{xxx}\)

0.096


has RootOf

1.051

122

Nonlinear PDE’s

Estevez Mansfield Clarkson \(u_{tyyy} + \beta u_y u_{yt} + \beta u_{yy} u_t + u_{tt} = 0\)

0.041

0.15

123

Nonlinear PDE’s

Fisher’s \(u_t = u(1-u)+u_{xx}\)

0.063

0.162

124

Nonlinear PDE’s

Hunter Saxton \(\left ( u_t + u u_x) \right )_x = \frac {1}{2} (u_x)^2\)

0.051


with RootOf

0.155

125

Nonlinear PDE’s

Kadomtsev Petviashvili \( \left ( u_t + u u_x + \epsilon ^2 u_{xxx} \right )_x + \lambda u_{yy} = 0 \)

0.073

0.132

126

Nonlinear PDE’s

Klein Gordon \(u_{xx}+u_{yy}+ \lambda u^p=0\)

0.006

0.025

127

Nonlinear PDE’s

Klein Gordon \(u_{xx}+u_{yy}+ u^2=0\)

0.237

0.387

128

Nonlinear PDE’s

Khokhlov Zabolotskaya \(u_{x t} - (u u_x)_x = u_{yy}\)

0.073

0.275

129

Nonlinear PDE’s

Korteweg de Vries (KdV) \(u_t + (u_x)^3+ 6 u u_x = 0\)

0.038

0.094

130

Nonlinear PDE’s

Lin Tsien \(2 u_{tx} + u_x u_{xx} - u_{yy} = 0\)

0.09

0.265

131

Nonlinear PDE’s

Liouville \(u_{xx} + u_{yy} +e^{\lambda u} = 0\)

0.006

0.037

132

Nonlinear PDE’s

Plateau \((1+u_y^2)u_{xx} - 2 u_x u_y y_{xy} + (1+u_x^2) u_{yy} = 0\)

0.039

0.173

133

Nonlinear PDE’s

Rayleigh \(u_{tt} - u_{xx} = \epsilon (u_t - u_t^3)\)

0.099


Has RootOf

0.167

134

Nonlinear PDE’s

Sawada Kotera \(u_t + 45 u^2 u_x + 15 u_x u_{xx} + 15 u u_{xxx} + u_{xxxxx} = 0 \)

0.093

0.176

135

Nonlinear PDE’s

Sine Gordon \(\phi _{tt} - \phi _{xx} + \sin \phi = 0\)

0.01

0.026

136

Nonlinear PDE’s

Sinh Gordon \( u_{xt} = \sinh u\)

0.01

0.031

137

Nonlinear PDE’s

Sinh Poisson \(u_{xx}+u_{yy} + \sinh u=0\)

0.009

0.016

138

Nonlinear PDE’s

Thomas equation \( u_{xy} + \alpha u_x + \beta u_y+ \nu u_x u_y =0\)

0.074

0.45

139

Nonlinear PDE’s

phi equation \(\phi _{tt} - \phi _{xx} - \phi + \phi ^3 = 0\)

0.053

0.165

140

more miscellaneous

\(S S_{xy} + S_x S_y = 1\)

0.04

0.052

141

more miscellaneous

\(u_{rr} + u_{\theta \theta } = 0\)

30.952

0.746

142

more miscellaneous

\( u_{xx} + y u_{yy} = 0\)

8.842

3.441

143

more miscellaneous

\(u_t + u_{xxx} = 0\)

0.191

15.76

144

more miscellaneous

\(u_{xy} = \sin (x) \sin (y) \)

5.14

0.619

145

more miscellaneous

\(w_t = w_{x_1 x_1} + w_{x_2 x_2} + w_{x_3 x_3}\)

2.907

0.847

146

more miscellaneous

Linear PDE, initial conditions at \(t=t_0\)

3.923

0.825

147

more miscellaneous

second order in time, Linear PDE, initial conditions at \(t=t_0\)

2.226

2.962

148

more miscellaneous

Einstein-Weiner \(u_t = -\beta u_x + D u_{xx}\)

0.046

0.362

149

more miscellaneous

Using integral transforms.

40.116

2.906