2.2.126 Problems 12501 to 12600

Table 2.253: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

12501

\[ {}\frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}} = 0 \]

[_separable]

1.701

12502

\[ {}\frac {2 y^{{3}/{2}}+1}{\sqrt {x}}+\left (3 \sqrt {x}\, \sqrt {y}-1\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.215

12503

\[ {}2 y x -3+\left (x^{2}+4 y\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.081

12504

\[ {}3 x^{2} y^{2}-y^{3}+2 x +\left (2 x^{3} y-3 x y^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational]

1.572

12505

\[ {}2 y \sin \left (x \right ) \cos \left (x \right )+y^{2} \sin \left (x \right )+\left (\sin \left (x \right )^{2}-2 y \cos \left (x \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

70.576

12506

\[ {}y \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x}+y^{2}+\left ({\mathrm e}^{x}+2 y x \right ) y^{\prime } = 0 \]
i.c.

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

1.634

12507

\[ {}\frac {3-y}{x^{2}}+\frac {\left (y^{2}-2 x \right ) y^{\prime }}{x y^{2}} = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.435

12508

\[ {}\frac {1+8 x y^{{2}/{3}}}{x^{{2}/{3}} y^{{1}/{3}}}+\frac {\left (2 x^{{4}/{3}} y^{{2}/{3}}-x^{{1}/{3}}\right ) y^{\prime }}{y^{{4}/{3}}} = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _exact, _rational]

3.072

12509

\[ {}4 x +3 y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.917

12510

\[ {}y^{2}+2 y x -x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.857

12511

\[ {}y+x \left (x^{2}+y^{2}\right )^{2}+\left (y \left (x^{2}+y^{2}\right )^{2}-x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

1.661

12512

\[ {}4 y x +\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

1.197

12513

\[ {}y x +2 x +y+2+\left (x^{2}+2 x \right ) y^{\prime } = 0 \]

[_separable]

1.224

12514

\[ {}2 r \left (s^{2}+1\right )+\left (r^{4}+1\right ) s^{\prime } = 0 \]

[_separable]

2.085

12515

\[ {}\csc \left (y\right )+\sec \left (x \right ) y^{\prime } = 0 \]

[_separable]

2.160

12516

\[ {}\tan \left (\theta \right )+2 r \theta ^{\prime } = 0 \]

[_separable]

1.916

12517

\[ {}\left ({\mathrm e}^{v}+1\right ) \cos \left (u \right )+{\mathrm e}^{v} \left (1+\sin \left (u \right )\right ) v^{\prime } = 0 \]

[_separable]

2.406

12518

\[ {}\left (x +4\right ) \left (1+y^{2}\right )+y \left (x^{2}+3 x +2\right ) y^{\prime } = 0 \]

[_separable]

2.009

12519

\[ {}x +y-y^{\prime } x = 0 \]

[_linear]

1.047

12520

\[ {}2 y x +3 y^{2}-\left (2 y x +x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.184

12521

\[ {}v^{3}+\left (u^{3}-u v^{2}\right ) v^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12.033

12522

\[ {}x \tan \left (\frac {y}{x}\right )+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.354

12523

\[ {}\left (2 s^{2}+2 s t +t^{2}\right ) s^{\prime }+s^{2}+2 s t -t^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

7.010

12524

\[ {}x^{3}+y^{2} \sqrt {x^{2}+y^{2}}-x y \sqrt {x^{2}+y^{2}}\, y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.941

12525

\[ {}\sqrt {x +y}+\sqrt {x -y}+\left (\sqrt {x -y}-\sqrt {x +y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

15.153

12526

\[ {}y+2+y \left (x +4\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1.640

12527

\[ {}8 \cos \left (y\right )^{2}+\csc \left (x \right )^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2.839

12528

\[ {}\left (3 x +8\right ) \left (y^{2}+4\right )-4 y \left (x^{2}+5 x +6\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2.048

12529

\[ {}x^{2}+3 y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.025

12530

\[ {}2 x -5 y+\left (4 x -y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.197

12531

\[ {}3 x^{2}+9 y x +5 y^{2}-\left (6 x^{2}+4 y x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.279

12532

\[ {}x +2 y+\left (2 x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.388

12533

\[ {}3 x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.361

12534

\[ {}x^{2}+2 y^{2}+\left (4 y x -y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

135.198

12535

\[ {}2 x^{2}+2 y x +y^{2}+\left (2 y x +x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.587

12536

\[ {}y^{\prime }+\frac {3 y}{x} = 6 x^{2} \]

[_linear]

1.159

12537

\[ {}x^{4} y^{\prime }+2 x^{3} y = 1 \]

[_linear]

1.070

12538

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

1.542

12539

\[ {}y^{\prime }+4 y x = 8 x \]

[_separable]

0.958

12540

\[ {}x^{\prime }+\frac {x}{t^{2}} = \frac {1}{t^{2}} \]

[_separable]

1.021

12541

\[ {}\left (u^{2}+1\right ) v^{\prime }+4 v u = 3 u \]

[_separable]

1.149

12542

\[ {}y^{\prime } x +\frac {\left (2 x +1\right ) y}{x +1} = x -1 \]

[_linear]

1.194

12543

\[ {}\left (x^{2}+x -2\right ) y^{\prime }+3 \left (x +1\right ) y = x -1 \]

[_linear]

1.345

12544

\[ {}y^{\prime } x +y x +y-1 = 0 \]

[_linear]

0.951

12545

\[ {}y+\left (x y^{2}+x -y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.090

12546

\[ {}r^{\prime }+r \tan \left (t \right ) = \cos \left (t \right ) \]

[_linear]

1.442

12547

\[ {}\cos \left (t \right ) r^{\prime }+r \sin \left (t \right )-\cos \left (t \right )^{4} = 0 \]

[_linear]

3.542

12548

\[ {}\cos \left (x \right )^{2}-y \cos \left (x \right )-\left (1+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_linear]

3.195

12549

\[ {}y \sin \left (2 x \right )-\cos \left (x \right )+\left (1+\sin \left (x \right )^{2}\right ) y^{\prime } = 0 \]

[_linear]

5.543

12550

\[ {}y^{\prime }-\frac {y}{x} = -\frac {y^{2}}{x} \]

[_separable]

1.513

12551

\[ {}y^{\prime } x +y = -2 x^{6} y^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.980

12552

\[ {}y^{\prime }+\left (4 y-\frac {8}{y^{3}}\right ) x = 0 \]

[_separable]

2.277

12553

\[ {}x^{\prime }+\frac {\left (1+t \right ) x}{2 t} = \frac {1+t}{x t} \]

[_separable]

1.708

12554

\[ {}y^{\prime } x -2 y = 2 x^{4} \]
i.c.

[_linear]

1.398

12555

\[ {}y^{\prime }+3 x^{2} y = x^{2} \]
i.c.

[_separable]

1.184

12556

\[ {}{\mathrm e}^{x} \left (y-3 \left ({\mathrm e}^{x}+1\right )^{2}\right )+\left ({\mathrm e}^{x}+1\right ) y^{\prime } = 0 \]
i.c.

[_linear]

1.632

12557

\[ {}2 x \left (1+y\right )-\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1.364

12558

\[ {}r^{\prime }+r \tan \left (t \right ) = \cos \left (t \right )^{2} \]
i.c.

[_linear]

1.810

12559

\[ {}x^{\prime }-x = \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.332

12560

\[ {}y^{\prime }+\frac {y}{2 x} = \frac {x}{y^{3}} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.819

12561

\[ {}y^{\prime } x +y = \left (y x \right )^{{3}/{2}} \]
i.c.

[[_homogeneous, ‘class G‘], _rational]

2.911

12562

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 2 & 0\le x <1 \\ 0 & 1\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.530

12563

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 5 & 0\le x <10 \\ 1 & 10\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.672

12564

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} {\mathrm e}^{-x} & 0\le x <2 \\ {\mathrm e}^{-2} & 2\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.532

12565

\[ {}\left (x +2\right ) y^{\prime }+y = \left \{\begin {array}{cc} 2 x & 0\le x <2 \\ 4 & 2\le x \end {array}\right . \]
i.c.

[_linear]

0.565

12566

\[ {}a y^{\prime }+b y = k \,{\mathrm e}^{-\lambda x} \]

[[_linear, ‘class A‘]]

0.949

12567

\[ {}y^{\prime }+y = 2 \sin \left (x \right )+5 \sin \left (2 x \right ) \]

[[_linear, ‘class A‘]]

1.734

12568

\[ {}\cos \left (y\right ) y^{\prime }+\frac {\sin \left (y\right )}{x} = 1 \]

[‘y=_G(x,y’)‘]

1.747

12569

\[ {}\left (1+y\right ) y^{\prime }+x \left (2 y+y^{2}\right ) = x \]

[_separable]

1.658

12570

\[ {}y^{\prime } = \left (1-x \right ) y^{2}+\left (2 x -1\right ) y-x \]

[_Riccati]

1.698

12571

\[ {}y^{\prime } = -y^{2}+y x +1 \]

[_Riccati]

1.098

12572

\[ {}y^{\prime } = -8 x y^{2}+4 x \left (4 x +1\right ) y-8 x^{3}-4 x^{2}+1 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.171

12573

\[ {}6 x^{2} y-\left (x^{3}+1\right ) y^{\prime } = 0 \]

[_separable]

1.267

12574

\[ {}\left (3 x^{2} y^{2}-x \right ) y^{\prime }+2 x y^{3}-y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

2.639

12575

\[ {}y-1+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

1.159

12576

\[ {}x^{2}-2 y+y^{\prime } x = 0 \]

[_linear]

0.903

12577

\[ {}3 x -5 y+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.985

12578

\[ {}{\mathrm e}^{2 x} y^{2}+\left ({\mathrm e}^{2 x} y-2 y\right ) y^{\prime } = 0 \]

[_separable]

1.713

12579

\[ {}8 x^{3} y-12 x^{3}+\left (x^{4}+1\right ) y^{\prime } = 0 \]

[_separable]

1.161

12580

\[ {}2 x^{2}+y x +y^{2}+2 x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3.645

12581

\[ {}y^{\prime } = \frac {4 x^{3} y^{2}-3 x^{2} y}{x^{3}-2 x^{4} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.289

12582

\[ {}\left (x +1\right ) y^{\prime }+y x = {\mathrm e}^{-x} \]

[_linear]

1.608

12583

\[ {}y^{\prime } = \frac {2 x -7 y}{3 y-8 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.699

12584

\[ {}x^{2} y^{\prime }+y x = x y^{3} \]

[_separable]

2.589

12585

\[ {}\left (x^{3}+1\right ) y^{\prime }+6 x^{2} y = 6 x^{2} \]

[_separable]

1.182

12586

\[ {}y^{\prime } = \frac {2 x^{2}+y^{2}}{2 y x -x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14.514

12587

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

8.286

12588

\[ {}2 y^{2}+8+\left (-x^{2}+1\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

2.089

12589

\[ {}{\mathrm e}^{2 x} y^{2}-2 x +{\mathrm e}^{2 x} y y^{\prime } = 0 \]
i.c.

[_exact, _Bernoulli]

4.625

12590

\[ {}3 x^{2}+2 x y^{2}+\left (2 x^{2} y+6 y^{2}\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational]

1.330

12591

\[ {}4 x y y^{\prime } = 1+y^{2} \]
i.c.

[_separable]

2.518

12592

\[ {}y^{\prime } = \frac {2 x +7 y}{2 x -2 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.593

12593

\[ {}y^{\prime } = \frac {x y}{x^{2}+1} \]
i.c.

[_separable]

1.787

12594

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le x <2 \\ 0 & 0<x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.501

12595

\[ {}\left (x +2\right ) y^{\prime }+y = \left \{\begin {array}{cc} 2 x & 0\le x \le 2 \\ 4 & 2<x \end {array}\right . \]
i.c.

[_linear]

0.522

12596

\[ {}x^{2} y^{\prime }+y x = \frac {y^{3}}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

158.964

12597

\[ {}5 y x +4 y^{2}+1+\left (2 y x +x^{2}\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.367

12598

\[ {}2 x +\tan \left (y\right )+\left (x -x^{2} \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.009

12599

\[ {}\left (x +1\right ) y^{2}+y+\left (2 y x +1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.121

12600

\[ {}2 x y^{2}+y+\left (2 y^{3}-x \right ) y^{\prime } = 0 \]

[_rational]

2.082