2.2.126 Problems 12501 to 12600

Table 2.253: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

12501

\[ {}y^{\prime \prime }+a y = 0 \]

[[_2nd_order, _missing_x]]

3.070

12502

\[ {}y^{\prime \prime }-\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.043

12503

\[ {}y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.957

12504

\[ {}y^{\prime \prime }-\left (a \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.488

12505

\[ {}y^{\prime \prime }+a^{3} x \left (-a x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.585

12506

\[ {}y^{\prime \prime }-\left (a \,x^{2}+b c x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.522

12507

\[ {}y^{\prime \prime }-a \,x^{n} y = 0 \]

[[_Emden, _Fowler]]

0.928

12508

\[ {}y^{\prime \prime }-a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.282

12509

\[ {}y^{\prime \prime }-a \,x^{n -2} \left (a \,x^{n}+n +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.290

12510

\[ {}y^{\prime \prime }+\left (a \,x^{2 n}+b \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.274

12511

\[ {}y^{\prime \prime }+a y^{\prime }+b y = 0 \]

[[_2nd_order, _missing_x]]

3.115

12512

\[ {}y^{\prime \prime }+a y^{\prime }+\left (b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.758

12513

\[ {}y^{\prime \prime }+a y^{\prime }-\left (b \,x^{2}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.606

12514

\[ {}y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2}+a x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.391

12515

\[ {}y^{\prime \prime }+a y^{\prime }+b x \left (-b \,x^{3}+a x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.313

12516

\[ {}y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}+a \,x^{n}+n \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.538

12517

\[ {}y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}-a \,x^{n}+n \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.522

12518

\[ {}y^{\prime \prime }+y^{\prime } x +\left (n -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.545

12519

\[ {}y^{\prime \prime }-2 y^{\prime } x +2 n y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.527

12520

\[ {}y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.595

12521

\[ {}y^{\prime \prime }+a x y^{\prime }+b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.570

12522

\[ {}y^{\prime \prime }+a x y^{\prime }+\left (b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.648

12523

\[ {}y^{\prime \prime }+2 a x y^{\prime }+\left (b \,x^{4}+a^{2} x^{2}+c x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.654

12524

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.516

12525

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+a y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.429

12526

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (a x +b -c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.505

12527

\[ {}y^{\prime \prime }+\left (a x +2 b \right ) y^{\prime }+\left (a b x +b^{2}-a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.367

12528

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.768

12529

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.365

12530

\[ {}y^{\prime \prime }+2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x^{2}+2 a b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

38.268

12531

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.378

12532

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (-c \,x^{2 n}+a \,x^{n +1}+b \,x^{n}+n \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.822

12533

\[ {}y^{\prime \prime }+a \left (-b^{2}+x^{2}\right ) y^{\prime }-a \left (x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.540

12534

\[ {}y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c \left (a \,x^{2}+b -c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.524

12535

\[ {}y^{\prime \prime }+\left (a \,x^{2}+2 b \right ) y^{\prime }+\left (a b \,x^{2}-a x +b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.678

12536

\[ {}y^{\prime \prime }+\left (2 x^{2}+a \right ) y^{\prime }+\left (x^{4}+a \,x^{2}+b +2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

38.289

12537

\[ {}y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.738

12538

\[ {}y^{\prime \prime }+\left (a b \,x^{2}+b x +2 a \right ) y^{\prime }+a^{2} \left (b \,x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.908

12539

\[ {}y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+x \left (a b \,x^{2}+b c +2 a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.687

12540

\[ {}y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (a b \,x^{3}+a c \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.715

12541

\[ {}y^{\prime \prime }+\left (a \,x^{3}+2 b \right ) y^{\prime }+\left (a b \,x^{3}-a \,x^{2}+b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.787

12542

\[ {}y^{\prime \prime }+\left (a \,x^{3}+b x \right ) y^{\prime }+2 \left (2 a \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.326

12543

\[ {}y^{\prime \prime }+\left (a b \,x^{3}+b \,x^{2}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{3}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.891

12544

\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.989

12545

\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime }+b \,x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.761

12546

\[ {}y^{\prime \prime }+2 a \,x^{n} y^{\prime }+a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.243

12547

\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (b \,x^{2 n}+c \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.916

12548

\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime }-b \left (a \,x^{n +m}+b \,x^{2 m}+m \,x^{m -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.089

12549

\[ {}y^{\prime \prime }+2 a \,x^{n} y^{\prime }+\left (a^{2} x^{2 n}+b \,x^{2 m}+a n \,x^{n -1}+c \,x^{m -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.182

12550

\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}+b -c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.730

12551

\[ {}y^{\prime \prime }+\left (a \,x^{n}+2 b \right ) y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}+b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.797

12552

\[ {}y^{\prime \prime }+\left (a b \,x^{n}+b \,x^{n -1}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{n}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.029

12553

\[ {}y^{\prime \prime }+\left (a b \,x^{n}+2 b \,x^{n -1}-a^{2} x \right ) y^{\prime }+a \left (a b \,x^{n}+b \,x^{n -1}-a^{2} x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.453

12554

\[ {}y^{\prime \prime }+x^{n} \left (a \,x^{2}+\left (a c +b \right ) x +b c \right ) y^{\prime }-x^{n} \left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.100

12555

\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }-\left (a \,x^{n -1}+b \,x^{m -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.708

12556

\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a n \,x^{n -1}+b m \,x^{m -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.205

12557

\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a \left (n +1\right ) x^{n -1}+b \left (m +1\right ) x^{m -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.262

12558

\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+c \left (a \,x^{n}+b \,x^{m}-c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.951

12559

\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a b \,x^{n +m}+b \left (m +1\right ) x^{m -1}-a \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.123

12560

\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (a b \,x^{n +m}+b c \,x^{m}+a n \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.066

12561

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.602

12562

\[ {}x y^{\prime \prime }+a y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

1.009

12563

\[ {}x y^{\prime \prime }+a y^{\prime }+b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.165

12564

\[ {}x y^{\prime \prime }+a y^{\prime }+\left (b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.829

12565

\[ {}x y^{\prime \prime }+n y^{\prime }+b \,x^{1-2 n} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.230

12566

\[ {}x y^{\prime \prime }+\left (1-3 n \right ) y^{\prime }-a^{2} n^{2} x^{2 n -1} y = 0 \]

[[_Emden, _Fowler]]

0.487

12567

\[ {}x y^{\prime \prime }+a y^{\prime }+b \,x^{n} y = 0 \]

[[_Emden, _Fowler]]

1.149

12568

\[ {}x y^{\prime \prime }+a y^{\prime }+b \,x^{n} \left (-b \,x^{n +1}+a +n \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.654

12569

\[ {}x y^{\prime \prime }+a x y^{\prime }+a y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.409

12570

\[ {}x y^{\prime \prime }+\left (b -x \right ) y^{\prime }-a y = 0 \]

[_Laguerre]

0.851

12571

\[ {}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.264

12572

\[ {}x y^{\prime \prime }+\left (2 a x +b \right ) y^{\prime }+a \left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.204

12573

\[ {}x y^{\prime \prime }+\left (\left (a +b \right ) x +n +m \right ) y^{\prime }+\left (a b x +a n +b m \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.428

12574

\[ {}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.878

12575

\[ {}x y^{\prime \prime }-\left (a x +1\right ) y^{\prime }-b \,x^{2} \left (b x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.454

12576

\[ {}x y^{\prime \prime }-\left (2 a x +1\right ) y^{\prime }+\left (b \,x^{3}+a^{2} x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.434

12577

\[ {}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c x \left (-c \,x^{2}+a x +b +1\right ) = 0 \]

[[_2nd_order, _missing_y]]

1.102

12578

\[ {}x y^{\prime \prime }-\left (2 a x +1\right ) y^{\prime }+b \,x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.678

12579

\[ {}x y^{\prime \prime }+\left (a b \,x^{2}+b -5\right ) y^{\prime }+2 a^{2} \left (b -2\right ) x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.463

12580

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }-\left (a c \,x^{2}+\left (b c +c^{2}+a \right ) x +b +2 c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.815

12581

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x +2\right ) y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.743

12582

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (2 a x +b \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.862

12583

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (c -1\right ) \left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.488

12584

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (A \,x^{2}+B x +\operatorname {C0} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.089

12585

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x +2\right ) y^{\prime }+\left (c \,x^{2}+d x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.898

12586

\[ {}x y^{\prime \prime }+\left (a \,x^{3}+b \right ) y^{\prime }+a \left (b -1\right ) x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.617

12587

\[ {}x y^{\prime \prime }+x \left (a \,x^{2}+b \right ) y^{\prime }+\left (3 a \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.649

12588

\[ {}x y^{\prime \prime }+\left (a \,x^{3}+b \,x^{2}+2\right ) y^{\prime }+b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.843

12589

\[ {}x y^{\prime \prime }+\left (a b \,x^{3}+b \,x^{2}+a x -1\right ) y^{\prime }+a^{2} b \,x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.904

12590

\[ {}x y^{\prime \prime }+\left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime }+\left (d -1\right ) \left (a \,x^{2}+b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.683

12591

\[ {}x y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}-b^{2} x +2 b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.920

12592

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+2\right ) y^{\prime }+a \,x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.923

12593

\[ {}x y^{\prime \prime }+\left (x^{n}+1-n \right ) y^{\prime }+b \,x^{2 n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.646

12594

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a n \,x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.036

12595

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a \left (b -1\right ) x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.012

12596

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a \left (b +n -1\right ) x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.424

12597

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}-c x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.878

12598

\[ {}x y^{\prime \prime }+\left (a b \,x^{n}+b -3 n +1\right ) y^{\prime }+a^{2} n \left (b -n \right ) x^{2 n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.074

12599

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+\left (c \,x^{2 n -1}+d \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.850

12600

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+b \,x^{n -1}+2\right ) y^{\prime }+b \,x^{n -2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.058