2.2.219 Problems 21801 to 21900

Table 2.451: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

21801

\begin{align*} y y^{\prime }+x&=0 \\ y \left (1\right ) &= 2 \\ \end{align*}

[_separable]

7.740

21802

\begin{align*} r^{\prime }&=r \tan \left (t \right ) \\ r \left (0\right ) &= 1 \\ \end{align*}

[_separable]

3.696

21803

\begin{align*} {\mathrm e}^{x} \sec \left (y\right )+\left ({\mathrm e}^{x}+1\right ) \sec \left (y\right ) \tan \left (y\right ) y^{\prime }&=0 \\ y \left (3\right ) &= \frac {\pi }{3} \\ \end{align*}

[_separable]

0.656

21804

\begin{align*} \left (x -y\right ) y^{\prime }&=-x +y \\ \end{align*}

[_quadrature]

0.163

21805

\begin{align*} y&=y^{\prime } x -\sqrt {x^{2}+y^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14.273

21806

\begin{align*} x^{3}-y^{3}+y^{\prime } y^{2} x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9.774

21807

\begin{align*} y^{\prime }&=\frac {y}{x}-\csc \left (\frac {y}{x}\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

6.561

21808

\begin{align*} 3 x^{2}+2 y x +4 y^{2}+\left (20 x^{2}+6 y x +y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

20.475

21809

\begin{align*} \left (x +y\right ) y^{\prime }&=y \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

48.709

21810

\begin{align*} x^{2}+2 y x -2 y^{2}+\left (y^{2}+2 y x -2 x^{2}\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 3 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

23.609

21811

\begin{align*} a x -b y+\left (b x -a y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16.321

21812

\begin{align*} 2 x^{2}+5 x y^{2}+\left (5 x^{2} y-2 y^{4}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational]

3.135

21813

\begin{align*} a \,x^{2}+2 b x y+c y^{2}+\left (b \,x^{2}+2 c x y+y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

95.858

21814

\begin{align*} \sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

28.642

21815

\begin{align*} x^{2}+y \,{\mathrm e}^{2 y}+\left (2 y x +x \right ) {\mathrm e}^{2 y} y^{\prime }&=0 \\ \end{align*}

[_exact]

3.256

21816

\begin{align*} \sin \left (x \right )+\sin \left (y\right )+\left (x \cos \left (y\right )+\cos \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

29.079

21817

\begin{align*} 4 x -2 y+3+\left (5 y-2 x +7\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 2 \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.056

21818

\begin{align*} 2 x \sin \left (y\right )+2 x +3 \cos \left (x \right ) y+\left (\cos \left (y\right ) x^{2}+3 \sin \left (x \right )\right ) y^{\prime }&=0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

[_exact]

40.104

21819

\begin{align*} y \,{\mathrm e}^{2 x}-3 x \,{\mathrm e}^{2 y}+\left (\frac {{\mathrm e}^{2 x}}{2}-3 x^{2} {\mathrm e}^{2 y}-{\mathrm e}^{y}\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 0 \\ \end{align*}

[_exact]

6.076

21820

\begin{align*} -y+y^{\prime } x&=x^{2} y y^{\prime } \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12.055

21821

\begin{align*} x^{3} y^{\prime }-x^{2} y&=x^{5} y \\ \end{align*}

[_separable]

3.408

21822

\begin{align*} \left (x^{2}+y^{2}\right ) \left (y^{\prime } x +y\right )&=x y \left (-y+y^{\prime } x \right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

68.625

21823

\begin{align*} 3 y+2 y^{\prime } x +4 x y^{2}+3 x^{2} y y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17.174

21824

\begin{align*} -y+y^{\prime } x&=x^{2} \sqrt {x^{2}-y^{2}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

37.740

21825

\begin{align*} y^{\prime } x +y&=3 x^{2} \\ y \left (2\right ) &= 1 \\ \end{align*}

[_linear]

4.528

21826

\begin{align*} x^{2} y^{\prime }-y x&=x^{2}-y^{2} \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

18.475

21827

\begin{align*} y&=\left (2 x^{2} y^{3}-x \right ) y^{\prime } \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

16.588

21828

\begin{align*} y^{\prime }+4 y&=x^{2} \\ \end{align*}

[[_linear, ‘class A‘]]

2.365

21829

\begin{align*} y^{\prime }+\sin \left (x \right ) y&=2 x \,{\mathrm e}^{\cos \left (x \right )} \\ \end{align*}

[_linear]

2.773

21830

\begin{align*} y x +x^{2} y^{\prime }&=8 x^{2} \cos \left (x \right )^{2} \\ \end{align*}

[_linear]

2.558

21831

\begin{align*} 2 y+y^{\prime }&=\sin \left (3 x \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.219

21832

\begin{align*} 1-y^{\prime } x&=\ln \left (y\right ) y^{\prime } \\ \end{align*}

[[_1st_order, _with_exponential_symmetries]]

2.893

21833

\begin{align*} 2-x -y+\left (x +y+3\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9.280

21834

\begin{align*} 2+3 x -5 y+7 y^{\prime }&=0 \\ \end{align*}

[[_linear, ‘class A‘]]

1.757

21835

\begin{align*} 4 x +3 y+2+\left (5 x +4 y+1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

29.204

21836

\begin{align*} x -y-3+\left (3 x -3 y+1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9.550

21837

\begin{align*} 2 x -y-1+\left (3 x +2 y-5\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

39.501

21838

\begin{align*} x y \left (y^{\prime } x +y\right )&=4 x^{3} \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

11.432

21839

\begin{align*} y^{3} \left (y y^{\prime }+x \right )&=\left (x^{2}+y^{2}\right )^{3} y^{\prime } \\ \end{align*}

[_rational]

4.284

21840

\begin{align*} \left (1+{\mathrm e}^{-\frac {y}{x}}\right ) y^{\prime }+1-\frac {y}{x}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

9.555

21841

\begin{align*} y y^{\prime }+y^{2} \tan \left (x \right )&=\cos \left (x \right )^{2} \\ \end{align*}

[_Bernoulli]

9.887

21842

\begin{align*} -y+y^{\prime } x&=y^{3} \\ \end{align*}

[_separable]

9.220

21843

\begin{align*} y^{\prime }+3 x^{2} y&=3 x^{2} \\ \end{align*}

[_separable]

3.127

21844

\begin{align*} 4 x^{2} y^{2} y^{\prime }-3 x y^{3}&=x^{2} y^{3}+2 x^{2} y^{\prime } \\ \end{align*}

[_separable]

4.089

21845

\begin{align*} \sin \left (x \right )+\cos \left (y\right )+\cos \left (x \right )-y^{\prime } \sin \left (y\right )&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

5.635

21846

\begin{align*} y^{\prime } x +y&=y^{2} x^{3} \sin \left (x \right ) \\ \end{align*}

[_Bernoulli]

6.175

21847

\begin{align*} R q^{\prime }+\frac {q}{c}&=E \\ q \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

2.168

21848

\begin{align*} \left (y^{2} x^{2}-y x -2\right ) x y^{\prime }+y \left (y^{2} x^{2}-1\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.098

21849

\begin{align*} 3 x^{2}-2 y x +\left (4 y^{3}-x^{2}\right ) y^{\prime }&=0 \\ y \left (2\right ) &= 1 \\ \end{align*}

[_exact, _rational]

2.626

21850

\begin{align*} 3 x^{2}+2 y x -2 y^{2}+\left (2 x^{2}+6 y x +y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12.904

21851

\begin{align*} 2 x -y+1+\left (x -2 y-1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

32.470

21852

\begin{align*} 3 x +3 y-2+\left (2 x +2 y+1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9.198

21853

\begin{align*} a x y-b +\left (c x y-d \right ) x y^{\prime }&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

27.579

21854

\begin{align*} {y^{\prime }}^{2}-3&=0 \\ \end{align*}

[_quadrature]

0.353

21855

\begin{align*} {y^{\prime }}^{2}-4 y^{\prime }+2&=0 \\ \end{align*}

[_quadrature]

0.383

21856

\begin{align*} x y^{2} {y^{\prime }}^{2}+\left (x^{3}+x y^{2}-y^{3}\right ) y^{\prime }+x^{3}-y^{3}&=0 \\ \end{align*}

[_quadrature]

0.471

21857

\begin{align*} {y^{\prime }}^{2}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.342

21858

\begin{align*} 2 {y^{\prime }}^{3}+3 {y^{\prime }}^{2}&=x +y \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.036

21859

\begin{align*} 2 y a \,x^{3}-a \,x^{2} y^{\prime }+c {y^{\prime }}^{3}&=0 \\ \end{align*}

[_separable]

7.177

21860

\begin{align*} y^{2}-2 y y^{\prime } x +x^{2} {y^{\prime }}^{2}-{y^{\prime }}^{3}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.343

21861

\begin{align*} x +y {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

27.979

21862

\begin{align*} 2 x +y y^{\prime } \left (4 {y^{\prime }}^{2}+6\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

3.748

21863

\begin{align*} 2 {y^{\prime }}^{2}+y y^{\prime }-y^{4}&=0 \\ \end{align*}

[_quadrature]

7.570

21864

\begin{align*} y&=4 x {y^{\prime }}^{2}+2 y^{\prime } x \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.325

21865

\begin{align*} \left (x^{2}-2 y x \right ) {y^{\prime }}^{2}-\left (3 x^{2}+2 y\right ) \left (x -2 y\right ) y^{\prime }+6 x y \left (x -2 y\right )&=0 \\ \end{align*}

[_quadrature]

0.224

21866

\begin{align*} {y^{\prime }}^{2}+y&=y^{\prime } x +1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.286

21867

\begin{align*} y y^{\prime }&=-x {y^{\prime }}^{2} \\ \end{align*}

[_quadrature]

0.168

21868

\begin{align*} \left (-y^{\prime } x +y\right )^{2}&=y^{\prime } \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

1.451

21869

\begin{align*} y-{y^{\prime }}^{2}&=0 \\ \end{align*}

[_quadrature]

1.376

21870

\begin{align*} x -x {y^{\prime }}^{2}&=0 \\ \end{align*}

[_quadrature]

0.295

21871

\begin{align*} {y^{\prime }}^{3}+y {y^{\prime }}^{2}-x^{2} y^{\prime }-x^{2} y&=0 \\ \end{align*}

[_quadrature]

0.684

21872

\begin{align*} y&=y^{\prime } x +\ln \left (y^{\prime }\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

6.221

21873

\begin{align*} x {y^{\prime }}^{2}&=y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.681

21874

\begin{align*} y^{\prime \prime }-12 y^{\prime }+35 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

6.020

21875

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.793

21876

\begin{align*} 9 y^{\prime \prime }-30 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

7.931

21877

\begin{align*} 3 y^{\prime \prime }-4 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

15.892

21878

\begin{align*} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+7 y^{\prime \prime }+6 y^{\prime }-8 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.078

21879

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }+3 y^{\prime }-6 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.075

21880

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+5 y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.087

21881

\begin{align*} y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+42 y^{\prime \prime }-104 y^{\prime }+169 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.096

21882

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=2 x^{2}-3 x -17 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.172

21883

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y+8 \,{\mathrm e}^{-x}+3 x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

33.215

21884

\begin{align*} 4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

27.438

21885

\begin{align*} y^{\prime \prime }-y^{\prime }&=6 x^{5} {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _missing_y]]

6.602

21886

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

28.152

21887

\begin{align*} 4 y+y^{\prime \prime }&=4 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

5.322

21888

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime }&=x^{3}+{\mathrm e}^{x} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.189

21889

\begin{align*} y^{\prime \prime }+2 a y^{\prime }+a^{2} y&=x^{2} {\mathrm e}^{-a x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

28.728

21890

\begin{align*} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_high_order, _missing_y]]

0.201

21891

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=2 \sin \left (x \right ) {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

23.404

21892

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime }&=\sin \left (x \right ) {\mathrm e}^{-x} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.162

21893

\begin{align*} x^{\prime }+x+y^{\prime }+y&=0 \\ x^{\prime }-y^{\prime }-y&=t \\ \end{align*}

system_of_ODEs

0.604

21894

\begin{align*} y^{\prime }-3 z&=5 \\ y-z^{\prime }-x&=3-2 t \\ z+x^{\prime }&=-1 \\ \end{align*}

system_of_ODEs

1.211

21895

\begin{align*} x^{\prime \prime }-x+y&={\mathrm e}^{t} \\ x^{\prime }+x-y^{\prime }-y&=3 \,{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.052

21896

\begin{align*} x^{\prime }-2 x+y^{\prime }-2 y&=1 \\ y^{\prime }+z^{\prime }+z&=2 \\ 3 x+z^{\prime }+z&=3 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ z \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

1.119

21897

\begin{align*} x^{\prime }+3 x-y&=0 \\ y^{\prime }+y-3 x&=0 \\ \end{align*}

system_of_ODEs

0.444

21898

\begin{align*} x^{\prime }-x-2 y&=0 \\ y^{\prime }-2 y-3 x&=0 \\ \end{align*}

system_of_ODEs

0.487

21899

\begin{align*} y^{\prime }+y-x^{\prime \prime }+x&={\mathrm e}^{t} \\ y^{\prime }-x^{\prime }+x&={\mathrm e}^{-t} \\ \end{align*}

system_of_ODEs

0.046

21900

\begin{align*} 2 y^{\prime \prime \prime }+y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= -1 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.043