# |
ODE |
CAS classification |
Solved? |
\[
{}x y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 4 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-y = 72 x^{5}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = x^{2}-1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-y = 72 x^{5}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = x^{2}-1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+3 t y^{\prime }-3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}2 t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right ) {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-y = 2 x^{2}+2
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 2 x^{4} \sin \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 2 \left (x -1\right )^{2} {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x -1\right )^{2} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y = \left (x -1\right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = -2 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x +1\right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (x +2\right ) y^{\prime }-2 y = \left (2 x +3\right )^{2}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0
\] |
[_Gegenbauer] |
✓ |
|
\[
{}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 4 x +\sin \left (\ln \left (x \right )\right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (1-x \right ) y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+x = y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x y^{\prime }+y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 9 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x^{2}+2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime } = x +y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x y^{\prime }+y = \ln \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x y^{\prime }+y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2} {\mathrm e}^{-x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime } = x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime } = x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-y = x -\frac {1}{x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x y^{\prime }+y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 4 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N = t \ln \left (t \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = \ln \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = \ln \left (x \right )^{2}-\ln \left (x^{2}\right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = \ln \left (x +1\right )^{2}+x -1
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+4\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 8
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x +1\right ) y^{\prime \prime }-\left (3 x +4\right ) y^{\prime }+3 y = \left (2+3 x \right ) {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \frac {-x^{2}+1}{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime } = -\frac {2}{x}-\ln \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime }+x y^{\prime }-y = \cos \left (\frac {1}{x}\right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x \left (x +1\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = x +\frac {1}{x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}2 x y^{\prime \prime }+\left (-2+x \right ) y^{\prime }-y = x^{2}-1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-x y^{\prime }+y = x \left (1-\ln \left (x \right )\right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (\sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )-\sin \left (x \right )\right ) y = \left (\sin \left (x \right )+\cos \left (x \right )\right )^{2} {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1} = 0
\] |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }-2 y^{\prime } = x^{3}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 4 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }-3 y^{\prime } = 5 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \left (x^{2}-1\right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}t y^{\prime \prime }-y^{\prime } = 2 t^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime } = y^{\prime }+x^{5}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime }+x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}y^{\prime \prime } \cos \left (x \right ) = y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t y^{\prime \prime }+4 y^{\prime } = t^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}t y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-2 y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 2 x^{3}-x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+x y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0
\] |
[_Laguerre] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-y-a \,x^{2} = 0
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+\left (x +a \right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x y^{\prime }+y-3 x^{3} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y-x^{5} \ln \left (x \right ) = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x \left (x +1\right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2} = 0
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime }-2 a^{2} y = 0
\] |
[_Gegenbauer] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}+\frac {y}{\sin \left (x \right )^{2}}
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}y^{\prime \prime } = -\frac {x y^{\prime }}{f \left (x \right )}+\frac {y}{f \left (x \right )}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (k x +d \right ) y^{\prime }-k y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{n} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+\left (\lambda -x \right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\sin \left (x \right ) y^{\prime \prime }+2 \cos \left (x \right ) y^{\prime }+3 \sin \left (x \right ) y = {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}t x^{\prime \prime }+x^{\prime } = 1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}t^{2} x^{\prime \prime }-3 x^{\prime } t +3 x = 4 t^{7}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = \left (x +2\right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (2 x +1\right ) \left (x +1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = \left (2 x +1\right )^{2}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = -6 x^{3}+4 x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t^{2} x^{\prime \prime }+x^{\prime } t -x = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = -2 x +1
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }-\csc \left (x \right )^{2} y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime } = x^{2} {\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime } = 2 y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime } = 6 x^{5}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime } = 2 y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime } = 6
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {50}{x^{3}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 3 \sqrt {x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x +1\right ) y^{\prime \prime }+x y^{\prime }-y = \left (x +1\right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}2 x y^{\prime \prime }+y^{\prime } = \sqrt {x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime } = 3 y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {1}{x^{2}+1}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }+t y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} \left (\ln \left (t \right )-1\right ) y^{\prime \prime }-t y^{\prime }+y = -\frac {3 \left (1+\ln \left (t \right )\right )}{4 \sqrt {t}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
|
\[
{}x y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime } = y^{\prime }+x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x \ln \left (x \right ) y^{\prime \prime } = y^{\prime }
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x +2\right )^{2} y^{\prime \prime }+3 \left (x +2\right ) y^{\prime }-3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m}
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
|
\[
{}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }-2 y = 0
\] |
[_Jacobi] |
✓ |
|
\[
{}\left (2 x^{2}+3 x \right ) y^{\prime \prime }-6 \left (x +1\right ) y^{\prime }+6 y = 6
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime } = 1
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x \ln \left (x \right ) y^{\prime \prime }-y^{\prime } = \ln \left (x \right )^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (1-x \cot \left (x \right )\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 3 x^{2}+2 \ln \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = g \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 2 x^{3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 4 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }-y^{\prime } = 3 x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0
\] |
[_Laguerre] |
✓ |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \left (x^{2}-1\right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}t^{2} x^{\prime \prime }-2 x^{\prime } t +2 x = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = \frac {1}{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x y^{\prime \prime }+2 y^{\prime } = 2 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}x^{2} y^{\prime \prime }-x y^{\prime }+y = \ln \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
|
\[
{}x y^{\prime \prime }+3 y^{\prime } = 3 x
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}V^{\prime \prime }+\frac {2 V^{\prime }}{r} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}V^{\prime \prime }+\frac {V^{\prime }}{r} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|
\[
{}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
|