| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 3301 |
\begin{align*}
\left (x^{2}-8 x +14\right ) y^{\prime \prime }-8 \left (x -4\right ) y^{\prime }+20 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.255 |
|
| 3302 |
\begin{align*}
x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-2 x \left (2 x^{2}+1\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.255 |
|
| 3303 |
\begin{align*}
2 \left (1-x \right ) x y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.255 |
|
| 3304 |
\begin{align*}
2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.255 |
|
| 3305 |
\begin{align*}
x^{2} {y^{\prime }}^{2}+\left (x^{2} y-2 y x +x^{3}\right ) y^{\prime }+\left (y^{2}-x^{2} y\right ) \left (1-x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.255 |
|
| 3306 |
\begin{align*}
x^{\prime }&=\frac {1}{t \ln \left (t \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.255 |
|
| 3307 |
\begin{align*}
y^{\prime \prime }+4 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.255 |
|
| 3308 |
\begin{align*}
y^{\prime }&=x \cos \left (x^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.255 |
|
| 3309 |
\begin{align*}
-2 y+y^{\prime }&={\mathrm e}^{5 t} \\
y \left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.255 |
|
| 3310 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.255 |
|
| 3311 |
\begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.255 |
|
| 3312 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.256 |
|
| 3313 |
\begin{align*}
{\mathrm e}^{x}-\sin \left (y\right )+y^{\prime } \cos \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.256 |
|
| 3314 |
\begin{align*}
x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-\left (-1+y\right ) x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.256 |
|
| 3315 |
\begin{align*}
y^{\prime }+y x&=\cos \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.256 |
|
| 3316 |
\begin{align*}
y^{\prime }&=\left (y-2\right )^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.256 |
|
| 3317 |
\begin{align*}
x^{2} \left (1-2 x \right ) y^{\prime \prime }-x \left (5-4 x \right ) y^{\prime }+\left (9-4 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.256 |
|
| 3318 |
\begin{align*}
4 \left (t^{2}-3 t +2\right ) y^{\prime \prime }-2 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.256 |
|
| 3319 |
\begin{align*}
\left (-t^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } t +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.256 |
|
| 3320 |
\begin{align*}
-y+y^{\prime } x +x^{3} y^{\prime \prime \prime }&=x \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.256 |
|
| 3321 |
\begin{align*}
y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.256 |
|
| 3322 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-x_{2} \\
x_{2}^{\prime }&=x_{1}+5 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| 3323 |
\begin{align*}
y_{1}^{\prime }&=-10 y_{1}+9 y_{2} \\
y_{2}^{\prime }&=-4 y_{1}+2 y_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| 3324 |
\begin{align*}
y^{\prime }&=3 x^{2} y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| 3325 |
\(\left [\begin {array}{cc} -3 & -1 \\ 2 & -1 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.257 |
|
| 3326 |
\begin{align*}
y^{\prime }&=\frac {1}{t^{2}-1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| 3327 |
\begin{align*}
y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime }&=2 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| 3328 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 3329 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=7 x^{{3}/{2}} {\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 3330 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (2 x -1\right ) y^{\prime }+\left (x^{2}-x -1\right ) y&={\mathrm e}^{x} x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.258 |
|
| 3331 |
\begin{align*}
x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 y^{\prime } x -18 y&=x^{3} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
y^{\prime \prime }\left (1\right ) &= 7 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 3332 |
\begin{align*}
y y^{\prime }+{y^{\prime }}^{2}&=x \left (x +y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 3333 |
\begin{align*}
x^{2} \left (1-2 x \right ) y^{\prime \prime }-x \left (5+4 x \right ) y^{\prime }+\left (9+4 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.258 |
|
| 3334 |
\begin{align*}
y^{\prime \prime } x +\left (2 x +2\right ) y^{\prime }+2 y&=8 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.258 |
|
| 3335 |
\begin{align*}
y^{\prime \prime }&=\delta \left (t -3\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 3336 |
\begin{align*}
{y^{\prime }}^{3}-y^{\prime } \left (x^{2}+y x +y^{2}\right )+x y \left (x +y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 3337 |
\begin{align*}
x^{2} y^{\prime \prime \prime }-4 y^{\prime \prime } x +6 y^{\prime }&=4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 3338 |
\begin{align*}
y^{\prime \prime \prime }+12 y^{\prime \prime }+48 y^{\prime }+64 y&=8 x \,{\mathrm e}^{-4 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| 3339 |
\begin{align*}
y^{\prime \prime }-x^{2} y^{\prime }-3 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 3340 |
\begin{align*}
x y^{\prime \prime \prime }-y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 3341 |
\begin{align*}
y^{2}+y-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 3342 |
\begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y&=4 \,{\mathrm e}^{x}-18 \,{\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 3343 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x -2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 3344 |
\begin{align*}
\frac {8 y^{\prime \prime }}{5}+y&=\operatorname {Heaviside}\left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 3345 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (t \right ) \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 3346 |
\begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| 3347 |
\begin{align*}
y^{\prime }&=-x \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 3348 |
\begin{align*}
y_{1}^{\prime }&=3 y_{1}+4 y_{2} \\
y_{2}^{\prime }&=-y_{1}+7 y_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 3349 |
\begin{align*}
y^{\prime }&=a +b x +c y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.260 |
|
| 3350 |
\begin{align*}
y^{\prime }+8 y^{\prime \prime } x +4 x^{2} y^{\prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 3351 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=12 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 3352 |
\begin{align*}
x^{2} y^{3}-x^{3} y^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| 3353 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.260 |
|
| 3354 |
\begin{align*}
\left (x^{4}-x^{3}\right ) y^{\prime \prime }+\left (2 x^{3}-2 x^{2}-x \right ) y^{\prime }-y&=\frac {\left (x -1\right )^{2}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.260 |
|
| 3355 |
\begin{align*}
y^{\prime \prime \prime }+\cos \left (x \right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }-\cos \left (x \right ) y&=\sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.260 |
|
| 3356 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=4 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{t} \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| 3357 |
\begin{align*}
x y {y^{\prime }}^{2}+\left (x^{2}-y^{2}\right ) y^{\prime }-y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| 3358 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime } x +8 y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| 3359 |
\begin{align*}
y+\left (2 x -{\mathrm e}^{y} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| 3360 |
\begin{align*}
x^{\prime }&=0 \\
y^{\prime }&=x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| 3361 |
\begin{align*}
y^{\prime }&={\mathrm e}^{z -y^{\prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| 3362 |
\begin{align*}
y x -x^{2} y^{\prime }+2 x^{3} y^{\prime \prime }+x^{4} y^{\prime \prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| 3363 |
\begin{align*}
x y^{\prime \prime \prime }-y^{\prime \prime } x -y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.261 |
|
| 3364 |
\begin{align*}
y^{\prime }&=y \\
y \left (0\right ) &= 2 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| 3365 |
\begin{align*}
t x^{\prime \prime }+\left (4 t -2\right ) x^{\prime }+\left (13 t -4\right ) x&=0 \\
x \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
0.262 |
|
| 3366 |
\begin{align*}
\left (1-x \right ) y^{\prime }&=y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| 3367 |
\begin{align*}
y-\ln \left (x \right )-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| 3368 |
\begin{align*}
\left (2+x \right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| 3369 |
\begin{align*}
y y^{\prime \prime }&=x \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.262 |
|
| 3370 |
\begin{align*}
\left (1-x \right ) x^{2} y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (-x +2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.262 |
|
| 3371 |
\begin{align*}
3 \left (x +3\right ) x^{2} y^{\prime \prime }-x \left (15+x \right ) y^{\prime }-20 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.262 |
|
| 3372 |
\begin{align*}
\left (-4 x^{2}+1\right ) y^{\prime \prime }-20 y^{\prime } x -16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.262 |
|
| 3373 |
\begin{align*}
\left (x^{2}+2\right ) y^{\prime \prime }+3 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.262 |
|
| 3374 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=\frac {1}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| 3375 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| 3376 |
\begin{align*}
y^{\prime \prime }+\frac {k x}{y^{4}}&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
0.262 |
|
| 3377 |
\begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| 3378 |
\begin{align*}
\left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 y^{\prime } x +4 y&=\frac {2}{x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.262 |
|
| 3379 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.263 |
|
| 3380 |
\begin{align*}
y_{1}^{\prime }&=-13 y_{1}+16 y_{2} \\
y_{2}^{\prime }&=-9 y_{1}+11 y_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 3381 |
\begin{align*}
y^{\prime \prime }-t^{3} y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 3382 |
\begin{align*}
1+\cos \left (x \right ) y-\sin \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 3383 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x +x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 3384 |
\begin{align*}
2 y+\left (x^{2} y+1\right ) x y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 3385 |
\begin{align*}
\left (2 x^{2}+1\right ) y^{\prime \prime }+7 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.263 |
|
| 3386 |
\begin{align*}
x \left (2+x \right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.263 |
|
| 3387 |
\begin{align*}
36 x^{2} \left (1-2 x \right ) y^{\prime \prime }+24 x \left (1-9 x \right ) y^{\prime }+\left (1-70 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.263 |
|
| 3388 |
\begin{align*}
\left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.263 |
|
| 3389 |
\begin{align*}
y^{\prime \prime }-2 a^{2} y^{3}+2 a b x y-b&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.263 |
|
| 3390 |
\begin{align*}
y^{\prime }&=3-\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 3391 |
\begin{align*}
y^{\prime \prime }+y x&=\sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.263 |
|
| 3392 |
\begin{align*}
r^{\prime }&=-a \sin \left (\theta \right ) \\
r \left (0\right ) &= 2 a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| 3393 |
\begin{align*}
y^{\prime }+2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 3394 |
\begin{align*}
x^{\prime \prime }+2 x^{\prime }+x&=t +\delta \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 3395 |
\begin{align*}
y^{\prime \prime }+\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 3396 |
\begin{align*}
{y^{\prime }}^{2}-a x y^{\prime }+a y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 3397 |
\begin{align*}
x^{3} y^{\prime \prime \prime }&=a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 3398 |
\begin{align*}
x y^{2}+\left (x^{2} y+10 y^{4}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 3399 |
\begin{align*}
x^{\prime \prime }+x&=2 \cos \left (t \right ) \\
x \left (0\right ) &= -1 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| 3400 |
\begin{align*}
y^{\prime \prime }+y&=\cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.264 |
|