2.3.81 Problems 8001 to 8100

Table 2.693: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

8001

2752

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{3} \\ x_{2}^{\prime }&=2 x_{2}+x_{3} \\ x_{3}^{\prime }&=2 x_{3} \\ x_{4}^{\prime }&=-x_{3}+2 x_{4} \\ \end{align*}

0.736

8002

3839

\begin{align*} x_{1}^{\prime }&=-x_{1} \\ x_{2}^{\prime }&=x_{1}+5 x_{2}-x_{3} \\ x_{3}^{\prime }&=x_{1}+6 x_{2}-2 x_{3} \\ \end{align*}

0.736

8003

5364

\begin{align*} {y^{\prime }}^{2}&=a^{2} y^{2} \\ \end{align*}

0.736

8004

8590

\begin{align*} y^{\prime \prime } x +\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.736

8005

8599

\begin{align*} y^{\prime \prime }+\left ({\mathrm e}^{-2 x}-\frac {1}{9}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.736

8006

9176

\begin{align*} y \ln \left (y\right )-2 y x +\left (x +y\right ) y^{\prime }&=0 \\ \end{align*}

0.736

8007

9425

\begin{align*} y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.736

8008

23615

\begin{align*} x^{\prime }&=3 x+2 y+2 z \\ y^{\prime }&=x+4 y+z \\ z^{\prime }&=-2 x-4 y-z \\ \end{align*}

0.736

8009

1982

\begin{align*} x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+x \left (x^{2}+3\right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.737

8010

5625

\begin{align*} {y^{\prime }}^{3}-a x y y^{\prime }+2 a y^{2}&=0 \\ \end{align*}

0.737

8011

5644

\begin{align*} 4 {y^{\prime }}^{3}+4 y^{\prime }&=x \\ \end{align*}

0.737

8012

19685

\begin{align*} x^{\prime }&=-\lambda x \\ \end{align*}

0.737

8013

23735

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=1\).

0.737

8014

2698

\begin{align*} x^{\prime }&=-2 x+y+t \\ y^{\prime }&=-4 x+3 y-1 \\ \end{align*}

0.738

8015

7888

\begin{align*} x +y+1-\left (3-x +y\right ) y^{\prime }&=0 \\ \end{align*}

0.738

8016

10774

\begin{align*} \left (2+x \right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

0.738

8017

9833

\begin{align*} y^{\prime \prime }+3 y^{\prime } x +3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.739

8018

505

\begin{align*} \left (1-x \right ) x y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.740

8019

1038

\begin{align*} x_{1}^{\prime }&=35 x_{1}-12 x_{2}+4 x_{3}+30 x_{4} \\ x_{2}^{\prime }&=22 x_{1}-8 x_{2}+3 x_{3}+19 x_{4} \\ x_{3}^{\prime }&=-10 x_{1}+3 x_{2}-9 x_{4} \\ x_{4}^{\prime }&=-27 x_{1}+9 x_{2}-3 x_{3}-23 x_{4} \\ \end{align*}

0.740

8020

1385

\begin{align*} x^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y \ln \left (x \right )&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}
Series expansion around \(x=1\).

0.740

8021

3896

\begin{align*} x_{1}^{\prime }&=3 x_{1}+4 x_{3} \\ x_{2}^{\prime }&=2 x_{2} \\ x_{3}^{\prime }&=-4 x_{1}-5 x_{3} \\ \end{align*}

0.740

8022

6321

\begin{align*} y^{\prime \prime }&=\operatorname {g3} \left (x \right )+\operatorname {g2} \left (x \right ) y+\operatorname {g1} \left (x \right ) y^{2}+\operatorname {g0} \left (x \right ) y^{3}+\left (\operatorname {f1} \left (x \right )+\operatorname {f0} \left (x \right ) y\right ) y^{\prime } \\ \end{align*}

0.740

8023

8827

\begin{align*} \left (\phi ^{\prime }-\frac {\phi ^{2}}{2}\right ) \sin \left (\theta \right )^{2}-\phi \sin \left (\theta \right ) \cos \left (\theta \right )&=\frac {\cos \left (2 \theta \right )}{2}+1 \\ \end{align*}

0.740

8024

13108

\begin{align*} x^{\prime }&=x+y-z \\ y^{\prime }&=y+z-x \\ z^{\prime }&=x-y+z \\ \end{align*}

0.740

8025

15404

\begin{align*} -{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.740

8026

20894

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.740

8027

3502

\begin{align*} z y^{\prime \prime }-2 y^{\prime }+9 z^{5} y&=0 \\ \end{align*}
Series expansion around \(z=0\).

0.741

8028

7213

\begin{align*} y^{\prime \prime }+\frac {y}{4 x}&=0 \\ \end{align*}

0.741

8029

13026

\begin{align*} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2}&=0 \\ \end{align*}

0.741

8030

17692

\begin{align*} \left (2 x^{2}+2\right ) y^{\prime \prime }+2 y^{\prime } x -3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.741

8031

6408

\begin{align*} x^{4} y^{\prime \prime }&=-4 y^{2}+x^{2} y^{\prime } \left (x +y^{\prime }\right ) \\ \end{align*}

0.742

8032

9588

\begin{align*} \left (x -1\right ) y^{\prime \prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.742

8033

10166

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x +1 \\ \end{align*}
Series expansion around \(x=0\).

0.742

8034

11612

\begin{align*} \left (3 x y^{3}-4 y x +y\right ) y^{\prime }+y^{2} \left (y^{2}-2\right )&=0 \\ \end{align*}

0.742

8035

24090

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.742

8036

620

\begin{align*} x_{1}^{\prime }&=x_{1}-4 x_{2}-2 x_{4} \\ x_{2}^{\prime }&=x_{2} \\ x_{3}^{\prime }&=6 x_{1}-12 x_{2}-x_{3}-6 x_{4} \\ x_{4}^{\prime }&=-4 x_{2}-x_{4} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ x_{3} \left (0\right ) &= 1 \\ x_{4} \left (0\right ) &= 1 \\ \end{align*}

0.743

8037

1007

\begin{align*} x_{1}^{\prime }&=x_{3} \\ x_{2}^{\prime }&=x_{4} \\ x_{3}^{\prime }&=-2 x_{1}+2 x_{2}-3 x_{3}+x_{4} \\ x_{4}^{\prime }&=2 x_{1}-2 x_{2}+x_{3}-3 x_{4} \\ \end{align*}

0.743

8038

1975

\begin{align*} 4 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+x \left (-19 x^{2}+7\right ) y^{\prime }-\left (14 x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.743

8039

5623

\begin{align*} {y^{\prime }}^{3}-\left (b x +a \right ) y^{\prime }+b y&=0 \\ \end{align*}

0.743

8040

8521

\begin{align*} 9 x^{2} y^{\prime \prime }+9 x^{2} y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.743

8041

15867

\begin{align*} y^{\prime }&=y^{2}-4 y-12 \\ y \left (0\right ) &= 5 \\ \end{align*}

0.743

8042

15871

\begin{align*} y^{\prime }&=\cos \left (y\right ) \\ y \left (0\right ) &= \pi \\ \end{align*}

0.743

8043

18363

\begin{align*} y^{\prime \prime }+y&=1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

0.743

8044

22225

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +\left (-n^{2}+x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.743

8045

500

\begin{align*} y^{\prime \prime } x +\left (3 x +5\right ) y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.744

8046

568

\begin{align*} x^{\prime \prime }+2 x^{\prime }+2 x&=2 \delta \left (t -\pi \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.744

8047

3692

\begin{align*} 2 y^{2} {\mathrm e}^{2 x}+3 x^{2}+2 y \,{\mathrm e}^{2 x} y^{\prime }&=0 \\ \end{align*}

0.744

8048

7102

\begin{align*} y^{\prime \prime }-y&=\sin \left (x \right )^{2} \\ \end{align*}

0.744

8049

9001

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (-x^{3}+3\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.744

8050

12800

\begin{align*} 12 y^{\prime \prime }+8 x y^{\prime \prime \prime }+x^{2} y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

0.744

8051

21655

\begin{align*} \left (x^{2}+2\right ) y^{\prime \prime }+\left (2 x +\frac {2}{x}\right ) y^{\prime }+2 x^{2} y&=\frac {4 x^{2}+2 x +10}{x^{4}} \\ \end{align*}
Series expansion around \(x=0\).

0.744

8052

7136

\begin{align*} y^{\prime \prime }&=2 y y^{\prime } \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

0.745

8053

9522

\begin{align*} y^{\prime \prime }-4 y^{\prime } x -4 y&={\mathrm e}^{x} \\ \end{align*}
Series expansion around \(x=0\).

0.745

8054

10537

\begin{align*} \left (2+4 x \right ) y^{\prime \prime }-4 y^{\prime }-\left (6+4 x \right ) y&=0 \\ \end{align*}

0.745

8055

14827

\begin{align*} y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} -4 t +8 \pi & 0<t <2 \pi \\ 0 & 2<t \end {array}\right . \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.745

8056

23617

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=z-x \\ z^{\prime }&=x+3 y+z \\ \end{align*}

0.745

8057

2445

\begin{align*} t^{3} y^{\prime \prime }+\sin \left (t^{3}\right ) y^{\prime }+t y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.746

8058

8515

\begin{align*} 4 y^{\prime \prime } x +\frac {y^{\prime }}{2}+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.746

8059

10891

\begin{align*} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y&=0 \\ \end{align*}

0.746

8060

17789

\begin{align*} \left (2 x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.746

8061

19618

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=-1\).

0.746

8062

22322

\begin{align*} y^{\prime }&=y \\ y \left (0\right ) &= 1 \\ \end{align*}

0.746

8063

573

\begin{align*} x^{\prime \prime }+6 x^{\prime }+9 x&=f \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.747

8064

2084

\begin{align*} x^{2} \left (2 x +1\right ) y^{\prime \prime }-2 x \left (3+14 x \right ) y^{\prime }+\left (6+100 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.747

8065

8326

\begin{align*} y^{\prime }&=y^{2}-y^{4} \\ \end{align*}

0.747

8066

11807

\begin{align*} {y^{\prime }}^{3}+y^{\prime } x -y&=0 \\ \end{align*}

0.747

8067

20513

\begin{align*} y+3 y^{\prime } x +9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime }&=\left (1+\ln \left (x \right )\right )^{2} \\ \end{align*}

0.747

8068

4569

\begin{align*} x_{1}^{\prime }&=-x_{1}+x_{2}-2 x_{3} \\ x_{2}^{\prime }&=4 x_{1}+x_{2} \\ x_{3}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ \end{align*}

0.748

8069

8582

\begin{align*} y^{\prime \prime } x +\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.748

8070

8649

\begin{align*} y^{\prime \prime }+y&=\delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.748

8071

2647

\begin{align*} 4 t y^{\prime \prime }+3 y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.749

8072

4176

\begin{align*} y_{1}^{\prime }&=y_{2} \\ y_{2}^{\prime }&=-y_{1}+y_{3} \\ y_{3}^{\prime }&=-y_{2} \\ \end{align*}

0.749

8073

16433

\begin{align*} y^{\prime \prime }&=2 y y^{\prime } \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.749

8074

1976

\begin{align*} 3 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+x \left (-11 x^{2}+1\right ) y^{\prime }+\left (-5 x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.750

8075

10198

\begin{align*} -y+y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.750

8076

10908

\begin{align*} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y&=0 \\ \end{align*}

0.750

8077

11671

\begin{align*} {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

0.750

8078

12051

\begin{align*} y^{\prime }&=-\frac {i \left (16 i x^{2}+16 y^{4}+8 y^{2} x^{4}+x^{8}\right ) x}{32 y} \\ \end{align*}

0.750

8079

18944

\begin{align*} y^{\prime \prime }+4 y&=2 \delta \left (t -\frac {\pi }{4}\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.750

8080

25376

\begin{align*} y_{1}^{\prime }&=4 y_{2} \\ y_{2}^{\prime }&=-y_{1} \\ y_{3}^{\prime }&=y_{1}+4 y_{2}-y_{3} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 2 \\ y_{2} \left (0\right ) &= 1 \\ y_{3} \left (0\right ) &= 2 \\ \end{align*}

0.750

8081

1983

\begin{align*} 2 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (8 x^{2}+3\right ) y^{\prime }-\left (-4 x^{2}+3\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.751

8082

5509

\begin{align*} x^{2} {y^{\prime }}^{2}-3 y y^{\prime } x +x^{3}+2 y^{2}&=0 \\ \end{align*}

0.751

8083

9702

\begin{align*} x^{\prime }&=4 x+5 y \\ y^{\prime }&=-2 x+6 y \\ \end{align*}

0.751

8084

25411

\begin{align*} y+y^{\prime }&=\operatorname {Heaviside}\left (-2+t \right ) \\ \end{align*}

0.751

8085

8513

\begin{align*} 2 y^{\prime \prime } x -y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.752

8086

18958

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=g \left (t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}
Using Laplace transform method.

0.752

8087

20005

\begin{align*} {y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )&=y^{2} \\ \end{align*}

0.752

8088

24108

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (2 x +4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.752

8089

989

\begin{align*} x_{1}^{\prime }&=5 x_{1}+5 x_{2}+2 x_{3} \\ x_{2}^{\prime }&=-6 x_{1}-6 x_{2}-5 x_{3} \\ x_{3}^{\prime }&=6 x_{1}+6 x_{2}+5 x_{3} \\ \end{align*}

0.753

8090

1972

\begin{align*} 8 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-13 x^{2}+1\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.753

8091

2353

\begin{align*} y^{\prime }&=y^{3}+{\mathrm e}^{-5 t} \\ y \left (0\right ) &= {\frac {2}{5}} \\ \end{align*}

0.753

8092

10249

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

0.753

8093

16851

\begin{align*} y^{\prime \prime }-\sin \left (x \right ) y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.753

8094

2270

\begin{align*} y_{1}^{\prime }&=-y_{1}+y_{2} \\ y_{2}^{\prime }&=y_{1}-y_{2}-2 y_{3} \\ y_{3}^{\prime }&=-y_{1}-y_{2}-y_{3} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 6 \\ y_{2} \left (0\right ) &= 5 \\ y_{3} \left (0\right ) &= -7 \\ \end{align*}

0.754

8095

3235

\begin{align*} x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }-y^{\prime } x +4 y&=\sin \left (\ln \left (x \right )\right ) \\ \end{align*}

0.754

8096

7374

\begin{align*} \left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.754

8097

10194

\begin{align*} x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.754

8098

10504

\begin{align*} \left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }-\left (6 x -8\right ) y&=0 \\ \end{align*}

0.754

8099

10678

\begin{align*} z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z}&=0 \\ \end{align*}

0.754

8100

21672

\begin{align*} 8 x^{2} y^{\prime \prime }+10 y^{\prime } x +\left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.754