|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} {x^{\prime }}^{2}+t x = \sqrt {t +1}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x^{\prime } = -\frac {2 x}{t}+t
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+y = {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime }+2 t x = {\mathrm e}^{-t^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t x^{\prime } = -x+t^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \theta ^{\prime } = -a \theta +{\mathrm e}^{b t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (t^{2}+1\right ) x^{\prime } = -3 t x+6 t
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime }+\frac {5 x}{t} = t +1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime } = \left (a +\frac {b}{t}\right ) x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} R^{\prime }+\frac {R}{t} = \frac {2}{t^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} N^{\prime } = N-9 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \cos \left (\theta \right ) v^{\prime }+v = 3
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} R^{\prime } = \frac {R}{t}+t \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+a y = \sqrt {t +1}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime } = 2 t x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime }+\frac {{\mathrm e}^{-t} x}{t} = t
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x^{\prime } = 3 t
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime } = \left (t +x\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime } = a x+b
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime }+p \left (t \right ) x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime } = x \left (1+x \,{\mathrm e}^{t}\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} y^{\prime }+2 t y-y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime } = a x+b x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} w^{\prime } = t w+t^{3} w^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3}+3 t x^{2} x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{3}+\frac {x}{t}+\left (x^{2}+\ln \left (t \right )\right ) x^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{\prime } = -\frac {\sin \left (x\right )-x \sin \left (t \right )}{t \cos \left (x\right )+\cos \left (t \right )}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x+3 t x^{2} x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2}-t^{2} x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t \cot \left (x\right ) x^{\prime } = -2
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-4 x^{\prime }+4 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-2 x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+4 x^{\prime }+3 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-4 x^{\prime }+4 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-2 x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+4 x^{\prime }+3 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x^{\prime }+4 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-4 x^{\prime }+6 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+9 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-12 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x^{\prime \prime }+3 x^{\prime }+3 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+\frac {x^{\prime }}{8}+x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x^{\prime }+x = 3 t^{3}-1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x^{\prime }+x = 3 \cos \left (t \right )-2 \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x^{\prime }+x = 12
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x^{\prime }+x = t^{2} {\mathrm e}^{3 t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (7 t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x^{\prime }+x = {\mathrm e}^{2 t} \cos \left (t \right )+t^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x^{\prime }+x = t \,{\mathrm e}^{-t} \sin \left (\pi t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x^{\prime }+x = \left (t +2\right ) \sin \left (\pi t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x^{\prime }+x = 4 t +5 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (2 t \right )+t \,{\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x^{\prime }+x = t^{3}+1-4 t \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x^{\prime }+x = -6+2 \,{\mathrm e}^{2 t} \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+7 x = t \,{\mathrm e}^{3 t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-x^{\prime } = 6+{\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x = t^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-3 x^{\prime }-4 x = 2 t^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x = 9 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-4 x = \cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x^{\prime }+2 x = t \sin \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-b x^{\prime }+x = \sin \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-3 x^{\prime }-40 x = 2 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-2 x^{\prime } = 4
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+2 x = \cos \left (\sqrt {2}\, t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+\frac {x^{\prime }}{100}+4 x = \cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+w^{2} x = \cos \left (\beta t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+3025 x = \cos \left (45 t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime } = -\frac {x}{t^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime } = \frac {4 x}{t^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} x^{\prime \prime }+3 t x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} x^{\prime \prime }-7 t x^{\prime }+16 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} x^{\prime \prime }+3 t x^{\prime }-8 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} x^{\prime \prime }+t x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} x^{\prime \prime }-t x^{\prime }+2 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+t^{2} x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x = \tan \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-x = t \,{\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-x = \frac {1}{t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} x^{\prime \prime }-2 x = t^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x = \frac {1}{t +1}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-2 x^{\prime }+x = \frac {{\mathrm e}^{t}}{2 t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+\frac {x^{\prime }}{t} = a
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-x = \frac {{\mathrm e}^{t}}{1+{\mathrm e}^{t}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+t x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-t x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-2 a x^{\prime }+a^{2} x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-\frac {\left (t +2\right ) x^{\prime }}{t}+\frac {\left (t +2\right ) x}{t^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} x^{\prime \prime }+t x^{\prime }+\left (t^{2}-\frac {1}{4}\right ) x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime \prime }+x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime \prime }+x^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime \prime }+x^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|