|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} x^{\prime \prime \prime }-x^{\prime }-8 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime \prime }+x^{\prime \prime } = 2 \,{\mathrm e}^{t}+3 t^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime \prime }-8 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime \prime }+x^{\prime \prime }-x^{\prime }-4 x = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{\prime }+5 x = \operatorname {Heaviside}\left (t -2\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime }+x = \sin \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-x^{\prime }-6 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-2 x^{\prime }+2 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-2 x^{\prime }+2 x = {\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+\frac {2 x^{\prime }}{5}+2 x = 1-\operatorname {Heaviside}\left (t -5\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+9 x = \sin \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-2 x = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime } = 2 x+\operatorname {Heaviside}\left (t -1\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+4 x = \cos \left (2 t \right ) \operatorname {Heaviside}\left (2 \pi -t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime } = x-2 \operatorname {Heaviside}\left (t -1\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime } = -x+\operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+\pi ^{2} x = \pi ^{2} \operatorname {Heaviside}\left (1-t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-4 x = 1-\operatorname {Heaviside}\left (t -1\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+3 x^{\prime }+2 x = {\mathrm e}^{-4 t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime }+3 x = \delta \left (t -1\right )+\operatorname {Heaviside}\left (t -4\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }-x = \delta \left (t -5\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x = \delta \left (t -2\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+4 x = \delta \left (t -2\right )-\delta \left (t -5\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+x = 3 \delta \left (t -2 \pi \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y^{\prime }+y = \delta \left (t -1\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime \prime }+4 x = \frac {\left (t -5\right ) \operatorname {Heaviside}\left (t -5\right )}{5}+\left (2-\frac {t}{5}\right ) \operatorname {Heaviside}\left (t -10\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -3 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -2 y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -3 x \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 4 y \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -2 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+4 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -3 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -2 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = -4 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+4 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -6 y \left (t \right ), y^{\prime }\left (t \right ) = 6 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-14]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )-1]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -3 x \left (t \right )+3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 5 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 6 x \left (t \right )+3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -5 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-10 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 5 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 9 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+4 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )+1, y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+2]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -5 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = 2 x \left (t \right )-10 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+\cos \left (w t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )+3, y^{\prime }\left (t \right ) = 7 x \left (t \right )+5 y \left (t \right )+2 t]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+7 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+y = 1+x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-7 y^{\prime }+12 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 x y y^{\prime }+x^{2}+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+y = x^{3} y^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+4 x y = 8 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }-4 y^{\prime }+8 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+2 y = 6 \,{\mathrm e}^{x}+4 x \,{\mathrm e}^{-2 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-4 y^{\prime }+4 y = -8 \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2}-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+y = 2 x \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+y = 2 x \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-12 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x^{2} \sin \left (y\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = \frac {y^{2}}{x -2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = y^{{1}/{3}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x +2 y+\left (y+2 x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2}+3+\left (2 x y-4\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y+1+\left (x^{2}+4 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 3 x^{2} y+2-\left (x^{3}+y\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} 6 x y+2 y^{2}-5+\left (3 x^{2}+4 x y-6\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y \sec \left (x \right )^{2}+\sec \left (x \right ) \tan \left (x \right )+\left (\tan \left (x \right )+2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \frac {x}{y^{2}}+x +\left (\frac {x^{2}}{y^{3}}+y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|