6.130 Problems 12901 to 13000

Table 6.259: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

12901

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (-x^{2}+2\right ) y = 0 \]

12902

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

12903

\[ {} x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

12904

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = 0 \]

12905

\[ {} \left (2 x^{3}-1\right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 x y = 0 \]

12906

\[ {} x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = x^{3} \]

12907

\[ {} x^{2} y^{\prime \prime }-2 n x \left (1+x \right ) y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y = 0 \]

12908

\[ {} x^{4} y^{\prime \prime }+2 x^{3} \left (1+x \right ) y^{\prime }+n^{2} y = 0 \]

12909

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

12910

\[ {} \left (x y^{\prime \prime \prime }-y^{\prime \prime }\right )^{2} = {y^{\prime \prime \prime }}^{2}+1 \]

12911

\[ {} y^{\prime \prime }+x y^{\prime } = x \]

12912

\[ {} y^{\prime \prime } = x \,{\mathrm e}^{x} \]

12913

\[ {} \left (y^{\prime }-x y^{\prime \prime }\right )^{2} = 1+{y^{\prime \prime }}^{2} \]

12914

\[ {} y^{\prime \prime } y-{y^{\prime }}^{2}-y^{2} y^{\prime } = 0 \]

12915

\[ {} y^{\prime \prime } y-{y^{\prime }}^{2}+1 = 0 \]

12916

\[ {} 2 y^{\prime \prime } = {\mathrm e}^{y} \]

12917

\[ {} y^{\prime \prime } y+2 y^{\prime }-{y^{\prime }}^{2} = 0 \]

12918

\[ {} \left (x^{2}-2 x +2\right ) y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

12919

\[ {} x y^{\prime \prime \prime }-y^{\prime \prime }-x y^{\prime }+y = -x^{2}+1 \]

12920

\[ {} \left (x +2\right )^{2} y^{\prime \prime \prime }+\left (x +2\right ) y^{\prime \prime }+y^{\prime } = 1 \]

12921

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = x \]

12922

\[ {} \left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y = \cos \left (x \right ) \]

12923

\[ {} \left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = 0 \]

12924

\[ {} 2 x^{3} y y^{\prime \prime \prime }+6 x^{3} y^{\prime } y^{\prime \prime }+18 x^{2} y y^{\prime \prime }+18 x^{2} {y^{\prime }}^{2}+36 x y y^{\prime }+6 y^{2} = 0 \]

12925

\[ {} x^{5} y^{\prime \prime }+\left (2 x^{4}-x \right ) y^{\prime }-\left (2 x^{3}-1\right ) y = 0 \]

12926

\[ {} x^{2} \left (-x^{3}+1\right ) y^{\prime \prime }-x^{3} y^{\prime }-2 y = 0 \]

12927

\[ {} x^{2} y^{\prime \prime \prime }-5 x y^{\prime \prime }+\left (4 x^{4}+5\right ) y^{\prime }-8 x^{3} y = 0 \]

12928

\[ {} y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }+2 \tan \left (x \right ) {y^{\prime }}^{2} = 0 \]

12929

\[ {} x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2} = 0 \]

12930

\[ {} x^{3} y^{\prime \prime }-\left (x y^{\prime }-y\right )^{2} = 0 \]

12931

\[ {} y^{\prime \prime } y-{y^{\prime }}^{2} = y^{2} \ln \left (y\right )-x^{2} y^{2} \]

12932

\[ {} \sin \left (x \right )^{2} y^{\prime \prime }-2 y = 0 \]

12933

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

12934

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \]

12935

\[ {} y^{\prime \prime }+y y^{\prime } = 0 \]

12936

\[ {} \left (x^{3}+1\right ) y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+18 x y^{\prime }+6 y = 0 \]

12937

\[ {} \left (x^{2}-x \right ) y^{\prime \prime }+\left (4 x +2\right ) y^{\prime }+2 y = 0 \]

12938

\[ {} y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

12939

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

12940

\[ {} x \left (x +2 y\right ) y^{\prime \prime }+2 x {y^{\prime }}^{2}+4 \left (x +y\right ) y^{\prime }+2 y+x^{2} = 0 \]

12941

\[ {} y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

12942

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2} = 0 \]

12943

\[ {} 4 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }+y^{\prime } = 0 \]

12944

\[ {} \sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 \sin \left (x \right ) y = 0 \]

12945

\[ {} [3 x^{\prime }\left (t \right )+3 x \left (t \right )+2 y \left (t \right ) = {\mathrm e}^{t}, 4 x \left (t \right )-3 y^{\prime }\left (t \right )+3 y \left (t \right ) = 3 t] \]

12946

\[ {} x^{\prime } = \frac {2 x}{t} \]

12947

\[ {} x^{\prime } = -\frac {t}{x} \]

12948

\[ {} x^{\prime } = -x^{2} \]

12949

\[ {} x^{\prime \prime }+2 x^{\prime }+2 x = 0 \]

12950

\[ {} x^{\prime } = {\mathrm e}^{-x} \]

12951

\[ {} x^{\prime }+2 x = t^{2}+4 t +7 \]

12952

\[ {} 2 t x^{\prime } = x \]

12953

\[ {} t^{2} x^{\prime \prime }-6 x = 0 \]

12954

\[ {} 2 x^{\prime \prime }-5 x^{\prime }-3 x = 0 \]

12955

\[ {} x^{\prime } = x \left (1-\frac {x}{4}\right ) \]

12956

\[ {} x^{\prime } = x^{2}+t^{2} \]

12957

\[ {} x^{\prime } = t \cos \left (t^{2}\right ) \]

12958

\[ {} x^{\prime } = \frac {t +1}{\sqrt {t}} \]

12959

\[ {} x^{\prime \prime } = -3 \sqrt {t} \]

12960

\[ {} x^{\prime } = t \,{\mathrm e}^{-2 t} \]

12961

\[ {} x^{\prime } = \frac {1}{t \ln \left (t \right )} \]

12962

\[ {} \sqrt {t}\, x^{\prime } = \cos \left (\sqrt {t}\right ) \]

12963

\[ {} x^{\prime } = \frac {{\mathrm e}^{-t}}{\sqrt {t}} \]

12964

\[ {} x^{\prime }+t x^{\prime \prime } = 1 \]

12965

\[ {} x^{\prime } = \sqrt {x} \]

12966

\[ {} x^{\prime } = {\mathrm e}^{-2 x} \]

12967

\[ {} y^{\prime } = 1+y^{2} \]

12968

\[ {} u^{\prime } = \frac {1}{5-2 u} \]

12969

\[ {} x^{\prime } = a x+b \]

12970

\[ {} Q^{\prime } = \frac {Q}{4+Q^{2}} \]

12971

\[ {} x^{\prime } = {\mathrm e}^{x^{2}} \]

12972

\[ {} y^{\prime } = r \left (a -y\right ) \]

12973

\[ {} x^{\prime } = \frac {2 x}{t +1} \]

12974

\[ {} \theta ^{\prime } = t \sqrt {t^{2}+1}\, \sec \left (\theta \right ) \]

12975

\[ {} \left (2 u+1\right ) u^{\prime }-t -1 = 0 \]

12976

\[ {} R^{\prime } = \left (t +1\right ) \left (1+R^{2}\right ) \]

12977

\[ {} y^{\prime }+y+\frac {1}{y} = 0 \]

12978

\[ {} \left (t +1\right ) x^{\prime }+x^{2} = 0 \]

12979

\[ {} y^{\prime } = \frac {1}{2 y+1} \]

12980

\[ {} x^{\prime } = \left (4 t -x\right )^{2} \]

12981

\[ {} x^{\prime } = 2 t x^{2} \]

12982

\[ {} x^{\prime } = t^{2} {\mathrm e}^{-x} \]

12983

\[ {} x^{\prime } = x \left (4+x\right ) \]

12984

\[ {} x^{\prime } = {\mathrm e}^{t +x} \]

12985

\[ {} T^{\prime } = 2 a t \left (T^{2}-a^{2}\right ) \]

12986

\[ {} y^{\prime } = t^{2} \tan \left (y\right ) \]

12987

\[ {} x^{\prime } = \frac {\left (4+2 t \right ) x}{\ln \left (x\right )} \]

12988

\[ {} y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \]

12989

\[ {} x^{\prime } = \frac {t^{2}}{1-x^{2}} \]

12990

\[ {} x^{\prime } = 6 t \left (x-1\right )^{{2}/{3}} \]

12991

\[ {} x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 t x} \]

12992

\[ {} x^{\prime } {\mathrm e}^{2 t}+2 x \,{\mathrm e}^{2 t} = {\mathrm e}^{-t} \]

12993

\[ {} \frac {x^{\prime }+t x^{\prime \prime }}{t} = -2 \]

12994

\[ {} y^{\prime } = \frac {y^{2}+2 t y}{t^{2}} \]

12995

\[ {} y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \]

12996

\[ {} x^{\prime } = 2 t^{3} x-6 \]

12997

\[ {} \cos \left (t \right ) x^{\prime }-2 x \sin \left (x\right ) = 0 \]

12998

\[ {} x^{\prime } = t -x^{2} \]

12999

\[ {} 7 t^{2} x^{\prime } = 3 x-2 t \]

13000

\[ {} x x^{\prime } = 1-t x \]