6.133 Problems 13201 to 13300

Table 6.265: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

13201

\[ {}x^{\prime \prime }-x = \delta \left (t -5\right ) \]

13202

\[ {}x^{\prime \prime }+x = \delta \left (t -2\right ) \]

13203

\[ {}x^{\prime \prime }+4 x = \delta \left (t -2\right )-\delta \left (t -5\right ) \]

13204

\[ {}x^{\prime \prime }+x = 3 \delta \left (t -2 \pi \right ) \]

13205

\[ {}y^{\prime \prime }+y^{\prime }+y = \delta \left (t -1\right ) \]

13206

\[ {}x^{\prime \prime }+4 x = \frac {\left (t -5\right ) \operatorname {Heaviside}\left (t -5\right )}{5}+\left (2-\frac {t}{5}\right ) \operatorname {Heaviside}\left (t -10\right ) \]

13207

\[ {}[x^{\prime }\left (t \right ) = -3 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )] \]

13208

\[ {}[x^{\prime }\left (t \right ) = -2 y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )] \]

13209

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )] \]

13210

\[ {}[x^{\prime }\left (t \right ) = 4 y \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )] \]

13211

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )] \]

13212

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

13213

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

13214

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )] \]

13215

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+4 y \left (t \right )] \]

13216

\[ {}[x^{\prime }\left (t \right ) = -3 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )] \]

13217

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

13218

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = -4 y \left (t \right )] \]

13219

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+4 y \left (t \right )] \]

13220

\[ {}[x^{\prime }\left (t \right ) = -6 y \left (t \right ), y^{\prime }\left (t \right ) = 6 y \left (t \right )] \]

13221

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-14] \]

13222

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )-1] \]

13223

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -3 y \left (t \right )] \]

13224

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )] \]

13225

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

13226

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -3 x \left (t \right )+3 y \left (t \right )] \]

13227

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )] \]

13228

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

13229

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -3 y \left (t \right )] \]

13230

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )] \]

13231

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )] \]

13232

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -3 y \left (t \right )] \]

13233

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 6 x \left (t \right )+3 y \left (t \right )] \]

13234

\[ {}[x^{\prime }\left (t \right ) = -5 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-10 y \left (t \right )] \]

13235

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )] \]

13236

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )] \]

13237

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

13238

\[ {}[x^{\prime }\left (t \right ) = 9 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )] \]

13239

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )] \]

13240

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+4 y \left (t \right )] \]

13241

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )+1, y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+2] \]

13242

\[ {}[x^{\prime }\left (t \right ) = -5 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = 2 x \left (t \right )-10 y \left (t \right )] \]

13243

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+\cos \left (w t \right )] \]

13244

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )+3, y^{\prime }\left (t \right ) = 7 x \left (t \right )+5 y \left (t \right )+2 t] \]

13245

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+7 y \left (t \right )] \]

13246

\[ {}y^{\prime }+y = 1+x \]

13247

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

13248

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2} \]

13249

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

13250

\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \]

13251

\[ {}x y^{\prime }+y = x^{3} y^{3} \]

13252

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

13253

\[ {}y^{\prime }+4 x y = 8 x \]

13254

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

13255

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-4 y^{\prime }+8 y = 0 \]

13256

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

13257

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0 \]

13258

\[ {}y^{\prime }+2 y = 6 \,{\mathrm e}^{x}+4 x \,{\mathrm e}^{-2 x} \]

13259

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = -8 \sin \left (2 x \right ) \]

13260

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

13261

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

13262

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]

13263

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]

13264

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

13265

\[ {}y^{\prime \prime }+y = 0 \]

13266

\[ {}y^{\prime \prime }+y = 0 \]

13267

\[ {}y^{\prime \prime }+y = 0 \]

13268

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

13269

\[ {}y^{\prime } = x^{2} \sin \left (y\right ) \]

13270

\[ {}y^{\prime } = \frac {y^{2}}{x -2} \]

13271

\[ {}y^{\prime } = y^{{1}/{3}} \]

13272

\[ {}3 x +2 y+\left (y+2 x \right ) y^{\prime } = 0 \]

13273

\[ {}y^{2}+3+\left (2 x y-4\right ) y^{\prime } = 0 \]

13274

\[ {}2 x y+1+\left (x^{2}+4 y\right ) y^{\prime } = 0 \]

13275

\[ {}3 x^{2} y+2-\left (x^{3}+y\right ) y^{\prime } = 0 \]

13276

\[ {}6 x y+2 y^{2}-5+\left (3 x^{2}+4 x y-6\right ) y^{\prime } = 0 \]

13277

\[ {}y \sec \left (x \right )^{2}+\sec \left (x \right ) \tan \left (x \right )+\left (\tan \left (x \right )+2 y\right ) y^{\prime } = 0 \]

13278

\[ {}\frac {x}{y^{2}}+x +\left (\frac {x^{2}}{y^{3}}+y\right ) y^{\prime } = 0 \]

13279

\[ {}\frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}} = 0 \]

13280

\[ {}\frac {2 y^{{3}/{2}}+1}{\sqrt {x}}+\left (3 \sqrt {x}\, \sqrt {y}-1\right ) y^{\prime } = 0 \]

13281

\[ {}2 x y-3+\left (x^{2}+4 y\right ) y^{\prime } = 0 \]

13282

\[ {}3 x^{2} y^{2}-y^{3}+2 x +\left (2 x^{3} y-3 x y^{2}+1\right ) y^{\prime } = 0 \]

13283

\[ {}2 y \sin \left (x \right ) \cos \left (x \right )+y^{2} \sin \left (x \right )+\left (\sin \left (x \right )^{2}-2 y \cos \left (x \right )\right ) y^{\prime } = 0 \]

13284

\[ {}y \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x}+y^{2}+\left ({\mathrm e}^{x}+2 x y\right ) y^{\prime } = 0 \]

13285

\[ {}\frac {3-y}{x^{2}}+\frac {\left (y^{2}-2 x \right ) y^{\prime }}{x y^{2}} = 0 \]

13286

\[ {}\frac {1+8 x y^{{2}/{3}}}{x^{{2}/{3}} y^{{1}/{3}}}+\frac {\left (2 x^{{4}/{3}} y^{{2}/{3}}-x^{{1}/{3}}\right ) y^{\prime }}{y^{{4}/{3}}} = 0 \]

13287

\[ {}4 x +3 y^{2}+2 x y y^{\prime } = 0 \]

13288

\[ {}y^{2}+2 x y-x^{2} y^{\prime } = 0 \]

13289

\[ {}y+x \left (x^{2}+y^{2}\right )^{2}+\left (y \left (x^{2}+y^{2}\right )^{2}-x \right ) y^{\prime } = 0 \]

13290

\[ {}4 x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

13291

\[ {}x y+2 x +y+2+\left (x^{2}+2 x \right ) y^{\prime } = 0 \]

13292

\[ {}2 r \left (s^{2}+1\right )+\left (r^{4}+1\right ) s^{\prime } = 0 \]

13293

\[ {}\csc \left (y\right )+\sec \left (x \right ) y^{\prime } = 0 \]

13294

\[ {}\tan \left (\theta \right )+2 r \theta ^{\prime } = 0 \]

13295

\[ {}\left ({\mathrm e}^{v}+1\right ) \cos \left (u \right )+{\mathrm e}^{v} \left (1+\sin \left (u \right )\right ) v^{\prime } = 0 \]

13296

\[ {}\left (x +4\right ) \left (1+y^{2}\right )+y \left (x^{2}+3 x +2\right ) y^{\prime } = 0 \]

13297

\[ {}x +y-x y^{\prime } = 0 \]

13298

\[ {}2 x y+3 y^{2}-\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]

13299

\[ {}v^{3}+\left (u^{3}-u v^{2}\right ) v^{\prime } = 0 \]

13300

\[ {}x \tan \left (\frac {y}{x}\right )+y-x y^{\prime } = 0 \]