6.136 Problems 13501 to 13600

Table 6.271: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

13501

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

13502

\[ {}y^{\prime \prime \prime \prime }+16 y = x \,{\mathrm e}^{\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )+{\mathrm e}^{-\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right ) \]

13503

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = \cos \left (x \right )^{2}-\cosh \left (x \right ) \]

13504

\[ {}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \sin \left (x \right ) \sin \left (2 x \right ) \]

13505

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

13506

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

13507

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

13508

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{3} \]

13509

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right )^{2} \]

13510

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \sec \left (x \right ) \]

13511

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \sec \left (x \right ) \]

13512

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \tan \left (2 x \right ) \]

13513

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 x}}{x^{3}} \]

13514

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \ln \left (x \right ) \]

13515

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

13516

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{3} \]

13517

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{x}} \]

13518

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{2 x}} \]

13519

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )+1} \]

13520

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \arcsin \left (x \right ) \]

13521

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{x} \]

13522

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \ln \left (x \right ) \]

13523

\[ {}x^{2} y^{\prime \prime }-6 x y^{\prime }+10 y = 3 x^{4}+6 x^{3} \]

13524

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 1 \]

13525

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = \left (x +2\right )^{2} \]

13526

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = x^{3} \]

13527

\[ {}x \left (x -2\right ) y^{\prime \prime }-\left (x^{2}-2\right ) y^{\prime }+2 \left (x -1\right ) y = 3 x^{2} \left (x -2\right )^{2} {\mathrm e}^{x} \]

13528

\[ {}\left (2 x +1\right ) \left (1+x \right ) y^{\prime \prime }+2 x y^{\prime }-2 y = \left (2 x +1\right )^{2} \]

13529

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = \sin \left (x \right )^{3} \]

13530

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = {\mathrm e}^{x} x^{2} \]

13531

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0 \]

13532

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

13533

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+3 y = 0 \]

13534

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

13535

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

13536

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

13537

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

13538

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

13539

\[ {}9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

13540

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

13541

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

13542

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0 \]

13543

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-6 x y^{\prime }+18 y = 0 \]

13544

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 4 x -6 \]

13545

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

13546

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right ) \]

13547

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 2 x \ln \left (x \right ) \]

13548

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 4 \sin \left (\ln \left (x \right )\right ) \]

13549

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{3} \]

13550

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0 \]

13551

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

13552

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

13553

\[ {}x^{2} y^{\prime \prime }-2 y = 4 x -8 \]

13554

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = -6 x^{3}+4 x^{2} \]

13555

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 10 x^{2} \]

13556

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

13557

\[ {}x^{2} y^{\prime \prime }-6 y = \ln \left (x \right ) \]

13558

\[ {}\left (x +2\right )^{2} y^{\prime \prime }-\left (x +2\right ) y^{\prime }-3 y = 0 \]

13559

\[ {}\left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y = 0 \]

13560

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

13561

\[ {}y^{\prime \prime }+8 x y^{\prime }-4 y = 0 \]

13562

\[ {}y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}+1\right ) y = 0 \]

13563

\[ {}y^{\prime \prime }+x y^{\prime }+\left (x^{2}-4\right ) y = 0 \]

13564

\[ {}y^{\prime \prime }+x y^{\prime }+\left (3 x +2\right ) y = 0 \]

13565

\[ {}y^{\prime \prime }-x y^{\prime }+\left (3 x -2\right ) y = 0 \]

13566

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+x y = 0 \]

13567

\[ {}\left (x -1\right ) y^{\prime \prime }-\left (3 x -2\right ) y^{\prime }+2 x y = 0 \]

13568

\[ {}\left (x^{3}-1\right ) y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

13569

\[ {}\left (x +3\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+y = 0 \]

13570

\[ {}y^{\prime \prime }-x y^{\prime }-y = 0 \]

13571

\[ {}y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

13572

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+2 x y = 0 \]

13573

\[ {}\left (2 x^{2}-3\right ) y^{\prime \prime }-2 x y^{\prime }+y = 0 \]

13574

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

13575

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

13576

\[ {}x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

13577

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

13578

\[ {}\left (x^{2}-3 x \right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+y = 0 \]

13579

\[ {}\left (x^{3}+x^{2}\right ) y^{\prime \prime }+\left (x^{2}-2 x \right ) y^{\prime }+4 y = 0 \]

13580

\[ {}\left (x^{4}-2 x^{3}+x^{2}\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+x^{2} y = 0 \]

13581

\[ {}\left (x^{5}+x^{4}-6 x^{3}\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

13582

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

13583

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-3\right ) y = 0 \]

13584

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+\frac {8}{9}\right ) y = 0 \]

13585

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (2 x^{2}+\frac {5}{9}\right ) y = 0 \]

13586

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

13587

\[ {}2 x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

13588

\[ {}3 x y^{\prime \prime }-\left (x -2\right ) y^{\prime }-2 y = 0 \]

13589

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

13590

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

13591

\[ {}x^{2} y^{\prime \prime }+\left (x^{4}+x \right ) y^{\prime }-y = 0 \]

13592

\[ {}x y^{\prime \prime }-\left (x^{2}+2\right ) y^{\prime }+x y = 0 \]

13593

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

13594

\[ {}\left (2 x^{2}-x \right ) y^{\prime \prime }+\left (2 x -2\right ) y^{\prime }+\left (-2 x^{2}+3 x -2\right ) y = 0 \]

13595

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\frac {3 y}{4} = 0 \]

13596

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x -1\right ) y = 0 \]

13597

\[ {}x^{2} y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }-3 y = 0 \]

13598

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+8 \left (x^{2}-1\right ) y = 0 \]

13599

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\frac {3 y}{4} = 0 \]

13600

\[ {}x y^{\prime \prime }+y^{\prime }+2 y = 0 \]