|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} 10 Q^{\prime }+100 Q = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }+y^{\prime \prime }+4 y^{\prime }+4 y = 8
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 4 t
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 8 \,{\mathrm e}^{2 t}-5 \,{\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = -t^{2}+2 t -10
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 12 \operatorname {Heaviside}\left (t \right )-12 \operatorname {Heaviside}\left (t -1\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime \prime }-16 y = 32 \operatorname {Heaviside}\left (t \right )-32 \operatorname {Heaviside}\left (t -\pi \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} y^{\prime \prime }+3 t y^{\prime }+y = t^{7}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} t^{2} y^{\prime \prime }-6 t y^{\prime }+\sin \left (2 t \right ) y = \ln \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }+3 y^{\prime }+\frac {y}{t} = t
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+t y^{\prime }-y \ln \left (t \right ) = \cos \left (2 t \right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} t^{3} y^{\prime \prime }-2 t y^{\prime }+y = t^{4}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+2 y^{\prime }+y = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-3 y^{\prime }-7 y = 4
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 5
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 y^{\prime \prime }+5 y^{\prime }-2 y = 3 t^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime } = 2 y^{\prime \prime }-4 y^{\prime }+\sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left [x^{\prime }\left (t \right ) = \frac {5 x \left (t \right )}{4}+\frac {3 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{2}-\frac {3 y \left (t \right )}{2}\right ]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right )-x \left (t \right )+2 y \left (t \right ) = 0, y^{\prime }\left (t \right )+y \left (t \right )-x \left (t \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right )+5 x \left (t \right )-2 y \left (t \right ) = 0, y^{\prime }\left (t \right )+2 x \left (t \right )-y \left (t \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right )-3 x \left (t \right )+2 y \left (t \right ) = 0, y^{\prime }\left (t \right )-x \left (t \right )+3 y \left (t \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right )+x \left (t \right )-z \left (t \right ) = 0, y^{\prime }\left (t \right )-y \left (t \right )+x \left (t \right ) = 0, z^{\prime }\left (t \right )+x \left (t \right )+2 y \left (t \right )-3 z \left (t \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left [x^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{2}+2 y \left (t \right )-3 z \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-\frac {z \left (t \right )}{2}, z^{\prime }\left (t \right ) = -2 x \left (t \right )+z \left (t \right )\right ]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = y \left (t \right ), x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right ) = t, x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-t, 2 x^{\prime }\left (t \right )+3 y^{\prime }\left (t \right ) = 2 x \left (t \right )+6]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [2 x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = t, 3 x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right ) = y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [5 x^{\prime }\left (t \right )-3 y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), 3 x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = t]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right )-4 y^{\prime }\left (t \right ) = 0, 2 x^{\prime }\left (t \right )-3 y^{\prime }\left (t \right ) = y \left (t \right )+t]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [3 x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right ) = \sin \left (t \right ), x^{\prime }\left (t \right )-2 y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+t]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -4 x \left (t \right )+9 y \left (t \right )+12 \,{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = -5 x \left (t \right )+2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -7 x \left (t \right )+6 y \left (t \right )+6 \,{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = -12 x \left (t \right )+5 y \left (t \right )+37]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -7 x \left (t \right )+10 y \left (t \right )+18 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = -10 x \left (t \right )+9 y \left (t \right )+37]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -14 x \left (t \right )+39 y \left (t \right )+78 \sinh \left (t \right ), y^{\prime }\left (t \right ) = -6 x \left (t \right )+16 y \left (t \right )+6 \cosh \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+4 y \left (t \right )-2 z \left (t \right )-2 \sinh \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right )-2 z \left (t \right )+10 \cosh \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )+3 y \left (t \right )+z \left (t \right )+5]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+6 y \left (t \right )-2 z \left (t \right )+50 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = 6 x \left (t \right )+2 y \left (t \right )-2 z \left (t \right )+21 \,{\mathrm e}^{-t}, z^{\prime }\left (t \right ) = -x \left (t \right )+6 y \left (t \right )+z \left (t \right )+9]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -2 x \left (t \right )-2 y \left (t \right )+4 z \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = -4 x \left (t \right )-2 y \left (t \right )+6 z \left (t \right )+{\mathrm e}^{2 t}]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )+3 z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+2 z \left (t \right )+2 \,{\mathrm e}^{-t}, z^{\prime }\left (t \right ) = -2 x \left (t \right )+2 y \left (t \right )-2 z \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 7 x \left (t \right )+y \left (t \right )-1-6 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = -4 x \left (t \right )+3 y \left (t \right )+4 \,{\mathrm e}^{t}-3]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )+24 \sin \left (t \right ), y^{\prime }\left (t \right ) = 9 x \left (t \right )-3 y \left (t \right )+12 \cos \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 7 x \left (t \right )-4 y \left (t \right )+10 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = 3 x \left (t \right )+14 y \left (t \right )+6 \,{\mathrm e}^{2 t}]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -7 x \left (t \right )+4 y \left (t \right )+6 \,{\mathrm e}^{3 t}, y^{\prime }\left (t \right ) = -5 x \left (t \right )+2 y \left (t \right )+6 \,{\mathrm e}^{2 t}]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -3 x \left (t \right )-3 y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )+2 z \left (t \right )+29 \,{\mathrm e}^{-t}, z^{\prime }\left (t \right ) = 5 x \left (t \right )+y \left (t \right )+z \left (t \right )+39 \,{\mathrm e}^{t}]
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )-z \left (t \right )+5 \sin \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )+z \left (t \right )-10 \cos \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+z \left (t \right )+2]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+3 y \left (t \right )+z \left (t \right )+5 \sin \left (2 t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-5 y \left (t \right )-3 z \left (t \right )+5 \cos \left (2 t \right ), z^{\prime }\left (t \right ) = -3 x \left (t \right )+7 y \left (t \right )+3 z \left (t \right )+23 \,{\mathrm e}^{t}]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+y \left (t \right )-3 z \left (t \right )+2 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )+2 z \left (t \right )+4 \,{\mathrm e}^{t}, z^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right )+3 z \left (t \right )+4 \,{\mathrm e}^{t}]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+5 y \left (t \right )+10 \sinh \left (t \right ), y^{\prime }\left (t \right ) = 19 x \left (t \right )-13 y \left (t \right )+24 \sinh \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} [x^{\prime }\left (t \right ) = 9 x \left (t \right )-3 y \left (t \right )-6 t, y^{\prime }\left (t \right ) = -x \left (t \right )+11 y \left (t \right )+10 t]
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime }+2 y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime }+y = x^{{3}/{2}} {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+4 y = 2 \sec \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+y = f \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x \left (1-x \right ) y^{\prime \prime }+\left (1-5 x \right ) y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}-1\right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime }+4 y^{\prime }-x y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{\prime \prime }+\left (1+x \right ) y^{\prime }-k y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }+y^{\prime }-2 y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} 2 x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x \left (x -1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-x^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime }+y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime }+x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+\alpha ^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-\alpha ^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+\beta y^{\prime }+\gamma y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y = \sin \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime }+\cos \left (x \right ) y = \frac {\sin \left (2 x \right )}{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2}-y^{\prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y \left (1-{y^{\prime }}^{2}\right ) = \left (x^{2}-y^{2}-a^{2}\right ) y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (1+u \right ) v+\left (1-v\right ) u v^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 1+y-\left (1-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (t^{2}+x t^{2}\right ) x^{\prime }+x^{2}+t x^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y-a +x^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {1+y^{2}}{x^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 1+s^{2}-\sqrt {t}\, s^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} r^{\prime }+r \tan \left (t \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime }-\sqrt {1-y^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \sqrt {-x^{2}+1}\, y^{\prime }-\sqrt {1-y^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y-x +\left (x +y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x +y+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x +y+\left (y-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-y = \sqrt {x^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 8 y+10 x +\left (5 y+7 x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|