6.141 Problems 14001 to 14100

Table 6.281: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

14001

\[ {} 10 Q^{\prime }+100 Q = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]

14002

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }+4 y^{\prime }+4 y = 8 \]

14003

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 4 t \]

14004

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 8 \,{\mathrm e}^{2 t}-5 \,{\mathrm e}^{t} \]

14005

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = -t^{2}+2 t -10 \]

14006

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 12 \operatorname {Heaviside}\left (t \right )-12 \operatorname {Heaviside}\left (t -1\right ) \]

14007

\[ {} y^{\prime \prime \prime \prime }-16 y = 32 \operatorname {Heaviside}\left (t \right )-32 \operatorname {Heaviside}\left (t -\pi \right ) \]

14008

\[ {} t^{2} y^{\prime \prime }+3 t y^{\prime }+y = t^{7} \]

14009

\[ {} t^{2} y^{\prime \prime }-6 t y^{\prime }+\sin \left (2 t \right ) y = \ln \left (t \right ) \]

14010

\[ {} y^{\prime \prime }+3 y^{\prime }+\frac {y}{t} = t \]

14011

\[ {} y^{\prime \prime }+t y^{\prime }-y \ln \left (t \right ) = \cos \left (2 t \right ) \]

14012

\[ {} t^{3} y^{\prime \prime }-2 t y^{\prime }+y = t^{4} \]

14013

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 1 \]

14014

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t} \]

14015

\[ {} y^{\prime \prime }-3 y^{\prime }-7 y = 4 \]

14016

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 5 \]

14017

\[ {} 3 y^{\prime \prime }+5 y^{\prime }-2 y = 3 t^{2} \]

14018

\[ {} y^{\prime \prime \prime } = 2 y^{\prime \prime }-4 y^{\prime }+\sin \left (t \right ) \]

14019

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )] \]

14020

\[ {} \left [x^{\prime }\left (t \right ) = \frac {5 x \left (t \right )}{4}+\frac {3 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{2}-\frac {3 y \left (t \right )}{2}\right ] \]

14021

\[ {} [x^{\prime }\left (t \right )-x \left (t \right )+2 y \left (t \right ) = 0, y^{\prime }\left (t \right )+y \left (t \right )-x \left (t \right ) = 0] \]

14022

\[ {} [x^{\prime }\left (t \right )+5 x \left (t \right )-2 y \left (t \right ) = 0, y^{\prime }\left (t \right )+2 x \left (t \right )-y \left (t \right ) = 0] \]

14023

\[ {} [x^{\prime }\left (t \right )-3 x \left (t \right )+2 y \left (t \right ) = 0, y^{\prime }\left (t \right )-x \left (t \right )+3 y \left (t \right ) = 0] \]

14024

\[ {} [x^{\prime }\left (t \right )+x \left (t \right )-z \left (t \right ) = 0, y^{\prime }\left (t \right )-y \left (t \right )+x \left (t \right ) = 0, z^{\prime }\left (t \right )+x \left (t \right )+2 y \left (t \right )-3 z \left (t \right ) = 0] \]

14025

\[ {} \left [x^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{2}+2 y \left (t \right )-3 z \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-\frac {z \left (t \right )}{2}, z^{\prime }\left (t \right ) = -2 x \left (t \right )+z \left (t \right )\right ] \]

14026

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = y \left (t \right ), x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = x \left (t \right )] \]

14027

\[ {} [x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right ) = t, x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

14028

\[ {} [x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-t, 2 x^{\prime }\left (t \right )+3 y^{\prime }\left (t \right ) = 2 x \left (t \right )+6] \]

14029

\[ {} [2 x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = t, 3 x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right ) = y \left (t \right )] \]

14030

\[ {} [5 x^{\prime }\left (t \right )-3 y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), 3 x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = t] \]

14031

\[ {} [x^{\prime }\left (t \right )-4 y^{\prime }\left (t \right ) = 0, 2 x^{\prime }\left (t \right )-3 y^{\prime }\left (t \right ) = y \left (t \right )+t] \]

14032

\[ {} [3 x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right ) = \sin \left (t \right ), x^{\prime }\left (t \right )-2 y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+t] \]

14033

\[ {} [x^{\prime }\left (t \right ) = -4 x \left (t \right )+9 y \left (t \right )+12 \,{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = -5 x \left (t \right )+2 y \left (t \right )] \]

14034

\[ {} [x^{\prime }\left (t \right ) = -7 x \left (t \right )+6 y \left (t \right )+6 \,{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = -12 x \left (t \right )+5 y \left (t \right )+37] \]

14035

\[ {} [x^{\prime }\left (t \right ) = -7 x \left (t \right )+10 y \left (t \right )+18 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = -10 x \left (t \right )+9 y \left (t \right )+37] \]

14036

\[ {} [x^{\prime }\left (t \right ) = -14 x \left (t \right )+39 y \left (t \right )+78 \sinh \left (t \right ), y^{\prime }\left (t \right ) = -6 x \left (t \right )+16 y \left (t \right )+6 \cosh \left (t \right )] \]

14037

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+4 y \left (t \right )-2 z \left (t \right )-2 \sinh \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right )-2 z \left (t \right )+10 \cosh \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )+3 y \left (t \right )+z \left (t \right )+5] \]

14038

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+6 y \left (t \right )-2 z \left (t \right )+50 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = 6 x \left (t \right )+2 y \left (t \right )-2 z \left (t \right )+21 \,{\mathrm e}^{-t}, z^{\prime }\left (t \right ) = -x \left (t \right )+6 y \left (t \right )+z \left (t \right )+9] \]

14039

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )-2 y \left (t \right )+4 z \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = -4 x \left (t \right )-2 y \left (t \right )+6 z \left (t \right )+{\mathrm e}^{2 t}] \]

14040

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )+3 z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+2 z \left (t \right )+2 \,{\mathrm e}^{-t}, z^{\prime }\left (t \right ) = -2 x \left (t \right )+2 y \left (t \right )-2 z \left (t \right )] \]

14041

\[ {} [x^{\prime }\left (t \right ) = 7 x \left (t \right )+y \left (t \right )-1-6 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = -4 x \left (t \right )+3 y \left (t \right )+4 \,{\mathrm e}^{t}-3] \]

14042

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )+24 \sin \left (t \right ), y^{\prime }\left (t \right ) = 9 x \left (t \right )-3 y \left (t \right )+12 \cos \left (t \right )] \]

14043

\[ {} [x^{\prime }\left (t \right ) = 7 x \left (t \right )-4 y \left (t \right )+10 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = 3 x \left (t \right )+14 y \left (t \right )+6 \,{\mathrm e}^{2 t}] \]

14044

\[ {} [x^{\prime }\left (t \right ) = -7 x \left (t \right )+4 y \left (t \right )+6 \,{\mathrm e}^{3 t}, y^{\prime }\left (t \right ) = -5 x \left (t \right )+2 y \left (t \right )+6 \,{\mathrm e}^{2 t}] \]

14045

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )-3 y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )+2 z \left (t \right )+29 \,{\mathrm e}^{-t}, z^{\prime }\left (t \right ) = 5 x \left (t \right )+y \left (t \right )+z \left (t \right )+39 \,{\mathrm e}^{t}] \]

14046

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )-z \left (t \right )+5 \sin \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )+z \left (t \right )-10 \cos \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+z \left (t \right )+2] \]

14047

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+3 y \left (t \right )+z \left (t \right )+5 \sin \left (2 t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-5 y \left (t \right )-3 z \left (t \right )+5 \cos \left (2 t \right ), z^{\prime }\left (t \right ) = -3 x \left (t \right )+7 y \left (t \right )+3 z \left (t \right )+23 \,{\mathrm e}^{t}] \]

14048

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+y \left (t \right )-3 z \left (t \right )+2 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )+2 z \left (t \right )+4 \,{\mathrm e}^{t}, z^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right )+3 z \left (t \right )+4 \,{\mathrm e}^{t}] \]

14049

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+5 y \left (t \right )+10 \sinh \left (t \right ), y^{\prime }\left (t \right ) = 19 x \left (t \right )-13 y \left (t \right )+24 \sinh \left (t \right )] \]

14050

\[ {} [x^{\prime }\left (t \right ) = 9 x \left (t \right )-3 y \left (t \right )-6 t, y^{\prime }\left (t \right ) = -x \left (t \right )+11 y \left (t \right )+10 t] \]

14051

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

14052

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

14053

\[ {} y^{\prime \prime }-2 y^{\prime }+y = x^{{3}/{2}} {\mathrm e}^{x} \]

14054

\[ {} y^{\prime \prime }+4 y = 2 \sec \left (2 x \right ) \]

14055

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x \]

14056

\[ {} y^{\prime \prime }+y = f \left (x \right ) \]

14057

\[ {} x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2} = 0 \]

14058

\[ {} x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-y = 0 \]

14059

\[ {} x \left (1-x \right ) y^{\prime \prime }+\left (1-5 x \right ) y^{\prime }-4 y = 0 \]

14060

\[ {} \left (x^{2}-1\right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = 0 \]

14061

\[ {} x y^{\prime \prime }+4 y^{\prime }-x y = 0 \]

14062

\[ {} 2 x y^{\prime \prime }+\left (1+x \right ) y^{\prime }-k y = 0 \]

14063

\[ {} x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

14064

\[ {} x^{2} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

14065

\[ {} 2 x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0 \]

14066

\[ {} x \left (x -1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

14067

\[ {} y^{\prime \prime }-x^{2} y = 0 \]

14068

\[ {} x y^{\prime \prime }+y^{\prime }+y = 0 \]

14069

\[ {} x y^{\prime \prime }+x^{2} y = 0 \]

14070

\[ {} y^{\prime \prime }+\alpha ^{2} y = 0 \]

14071

\[ {} y^{\prime \prime }-\alpha ^{2} y = 0 \]

14072

\[ {} y^{\prime \prime }+\beta y^{\prime }+\gamma y = 0 \]

14073

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

14074

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y = \sin \left (x \right ) \]

14075

\[ {} y^{\prime }+\cos \left (x \right ) y = \frac {\sin \left (2 x \right )}{2} \]

14076

\[ {} {y^{\prime }}^{2}-y^{\prime }-x y^{\prime }+y = 0 \]

14077

\[ {} y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

14078

\[ {} x y \left (1-{y^{\prime }}^{2}\right ) = \left (x^{2}-y^{2}-a^{2}\right ) y^{\prime } \]

14079

\[ {} y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0 \]

14080

\[ {} y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

14081

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0 \]

14082

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0 \]

14083

\[ {} y-x y^{\prime } = 0 \]

14084

\[ {} \left (1+u \right ) v+\left (1-v\right ) u v^{\prime } = 0 \]

14085

\[ {} 1+y-\left (1-x \right ) y^{\prime } = 0 \]

14086

\[ {} \left (t^{2}+x t^{2}\right ) x^{\prime }+x^{2}+t x^{2} = 0 \]

14087

\[ {} y-a +x^{2} y^{\prime } = 0 \]

14088

\[ {} z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0 \]

14089

\[ {} y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

14090

\[ {} 1+s^{2}-\sqrt {t}\, s^{\prime } = 0 \]

14091

\[ {} r^{\prime }+r \tan \left (t \right ) = 0 \]

14092

\[ {} \left (x^{2}+1\right ) y^{\prime }-\sqrt {1-y^{2}} = 0 \]

14093

\[ {} \sqrt {-x^{2}+1}\, y^{\prime }-\sqrt {1-y^{2}} = 0 \]

14094

\[ {} 3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

14095

\[ {} x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime } = 0 \]

14096

\[ {} y-x +\left (x +y\right ) y^{\prime } = 0 \]

14097

\[ {} x +y+x y^{\prime } = 0 \]

14098

\[ {} x +y+\left (y-x \right ) y^{\prime } = 0 \]

14099

\[ {} x y^{\prime }-y = \sqrt {x^{2}+y^{2}} \]

14100

\[ {} 8 y+10 x +\left (5 y+7 x \right ) y^{\prime } = 0 \]