6.143 Problems 14201 to 14300

Table 6.285: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

14201

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y+a x y^{2} = 0 \]

14202

\[ {}3 y^{\prime } y^{2}-a y^{3}-x -1 = 0 \]

14203

\[ {}y^{\prime } \left (x^{2} y^{3}+x y\right ) = 1 \]

14204

\[ {}x y^{\prime } = \left (y \ln \left (x \right )-2\right ) y \]

14205

\[ {}y-y^{\prime } \cos \left (x \right ) = y^{2} \cos \left (x \right ) \left (1-\sin \left (x \right )\right ) \]

14206

\[ {}x^{2}+y+\left (x -2 y\right ) y^{\prime } = 0 \]

14207

\[ {}y-3 x^{2}-\left (4 y-x \right ) y^{\prime } = 0 \]

14208

\[ {}\left (y^{3}-x \right ) y^{\prime } = y \]

14209

\[ {}\frac {y^{2}}{\left (x -y\right )^{2}}-\frac {1}{x}+\left (\frac {1}{y}-\frac {x^{2}}{\left (x -y\right )^{2}}\right ) y^{\prime } = 0 \]

14210

\[ {}6 x y^{2}+4 x^{3}+3 \left (2 x^{2} y+y^{2}\right ) y^{\prime } = 0 \]

14211

\[ {}\frac {x}{\left (x +y\right )^{2}}+\frac {\left (y+2 x \right ) y^{\prime }}{\left (x +y\right )^{2}} = 0 \]

14212

\[ {}\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}} = \frac {2 y y^{\prime }}{x^{3}} \]

14213

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

14214

\[ {}x +y y^{\prime } = \frac {y}{x^{2}+y^{2}}-\frac {x y^{\prime }}{x^{2}+y^{2}} \]

14215

\[ {}y = 2 x y^{\prime }+{y^{\prime }}^{2} \]

14216

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

14217

\[ {}y = x \left (y^{\prime }+1\right )+{y^{\prime }}^{2} \]

14218

\[ {}y = y {y^{\prime }}^{2}+2 x y^{\prime } \]

14219

\[ {}y = y y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

14220

\[ {}y = x y^{\prime }+\sqrt {1-{y^{\prime }}^{2}} \]

14221

\[ {}y = x y^{\prime }+y^{\prime } \]

14222

\[ {}y = x y^{\prime }+\frac {1}{y^{\prime }} \]

14223

\[ {}y = x y^{\prime }-\frac {1}{{y^{\prime }}^{2}} \]

14224

\[ {}y^{\prime } = \frac {2 y}{x}-\sqrt {3} \]

14225

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

14226

\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]

14227

\[ {}x y^{\prime \prime \prime } = 2 \]

14228

\[ {}y^{\prime \prime } = a^{2} y \]

14229

\[ {}y^{\prime \prime } = \frac {a}{y^{3}} \]

14230

\[ {}x y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} x^{2} \]

14231

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+{y^{\prime }}^{3} = 0 \]

14232

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \sin \left (2 x \right ) \]

14233

\[ {}{y^{\prime \prime }}^{2}+{y^{\prime }}^{2} = a^{2} \]

14234

\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]

14235

\[ {}y^{\prime \prime \prime } = {y^{\prime \prime }}^{2} \]

14236

\[ {}y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime \prime }}^{2} = 0 \]

14237

\[ {}y^{\prime \prime } = 9 y \]

14238

\[ {}y^{\prime \prime }+y = 0 \]

14239

\[ {}y^{\prime \prime }-y = 0 \]

14240

\[ {}y^{\prime \prime }+12 y = 7 y^{\prime } \]

14241

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

14242

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

14243

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

14244

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

14245

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

14246

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

14247

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

14248

\[ {}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-y a^{3} = 0 \]

14249

\[ {}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 0 \]

14250

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+9 y = 0 \]

14251

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

14252

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

14253

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 0 \]

14254

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = x \]

14255

\[ {}s^{\prime \prime }-a^{2} s = t +1 \]

14256

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]

14257

\[ {}y^{\prime \prime }-y = 5 x +2 \]

14258

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = {\mathrm e}^{x} \]

14259

\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = {\mathrm e}^{2 x} \]

14260

\[ {}y^{\prime \prime }+9 y = 6 \,{\mathrm e}^{3 x} \]

14261

\[ {}y^{\prime \prime }-3 y^{\prime } = 2-6 x \]

14262

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = {\mathrm e}^{-x} \cos \left (x \right ) \]

14263

\[ {}y^{\prime \prime }+4 y = 2 \sin \left (2 x \right ) \]

14264

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 2 x +3 \]

14265

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 5 a^{4} {\mathrm e}^{a x} \sin \left (a x \right ) \]

14266

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 8 \cos \left (a x \right ) \]

14267

\[ {}y^{\prime \prime }+2 h y^{\prime }+n^{2} y = 0 \]

14268

\[ {}y^{\prime \prime }+n^{2} y = h \sin \left (r x \right ) \]

14269

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]

14270

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

14271

\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (2 x \right )^{{3}/{2}}} \]

14272

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right )+1, y^{\prime }\left (t \right ) = x \left (t \right )+1] \]

14273

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

14274

\[ {}[4 x^{\prime }\left (t \right )-y^{\prime }\left (t \right )+3 x \left (t \right ) = \sin \left (t \right ), x^{\prime }\left (t \right )+y \left (t \right ) = \cos \left (t \right )] \]

14275

\[ {}y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

14276

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

14277

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

14278

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

14279

\[ {}\left (x^{2}+1\right ) y^{\prime }-x y-\alpha = 0 \]

14280

\[ {}x \cos \left (\frac {y}{x}\right ) y^{\prime } = y \cos \left (\frac {y}{x}\right )-x \]

14281

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \sin \left (2 x \right ) \]

14282

\[ {}x y^{\prime }+y-y^{2} \ln \left (x \right ) = 0 \]

14283

\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

14284

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

14285

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+6 y \left (t \right )] \]

14286

\[ {}[x^{\prime }\left (t \right ) = -4 x \left (t \right )-10 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

14287

\[ {}[x^{\prime }\left (t \right ) = 12 x \left (t \right )+18 y \left (t \right ), y^{\prime }\left (t \right ) = -8 x \left (t \right )-12 y \left (t \right )] \]

14288

\[ {}y^{\prime } = y^{2}+x \]

14289

\[ {}y^{\prime }+\frac {y}{x} = {\mathrm e}^{x} \]

14290

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-3 y \left (t \right )] \]

14291

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

14292

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

14293

\[ {}[x^{\prime }\left (t \right ) = -4 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )] \]

14294

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right )] \]

14295

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )] \]

14296

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )] \]

14297

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

14298

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-2 y \left (t \right )] \]

14299

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \]

14300

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )] \]