6.140 Problems 13901 to 14000

Table 6.279: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

13901

\[ {} y^{\prime \prime }+4 y^{\prime }+y = 0 \]

13902

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = 0 \]

13903

\[ {} 2 y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

13904

\[ {} 3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 0 \]

13905

\[ {} \left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right ) = x^{2} \]

13906

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cot \left (x \right ) y = 0 \]

13907

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]

13908

\[ {} x y^{\prime \prime }+2 x^{2} y^{\prime }+y \sin \left (x \right ) = \sinh \left (x \right ) \]

13909

\[ {} \sin \left (x \right ) y^{\prime \prime }+x y^{\prime }+7 y = 1 \]

13910

\[ {} y^{\prime \prime }-\left (x -1\right ) y^{\prime }+x^{2} y = \tan \left (x \right ) \]

13911

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

13912

\[ {} x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

13913

\[ {} y^{\prime \prime }+\frac {k x}{y^{4}} = 0 \]

13914

\[ {} y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

13915

\[ {} x y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0 \]

13916

\[ {} y^{\prime \prime }+2 x^{2} y^{\prime }+4 x y = 2 x \]

13917

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 1-2 x \]

13918

\[ {} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

13919

\[ {} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+2 \left (1-x \right ) y = 0 \]

13920

\[ {} y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 2 x \]

13921

\[ {} \ln \left (x^{2}+1\right ) y^{\prime \prime }+\frac {4 x y^{\prime }}{x^{2}+1}+\frac {\left (-x^{2}+1\right ) y}{\left (x^{2}+1\right )^{2}} = 0 \]

13922

\[ {} x y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \]

13923

\[ {} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y = \cos \left (x \right ) \]

13924

\[ {} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }-\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

13925

\[ {} x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x} = 1 \]

13926

\[ {} x y^{\prime \prime }+\left (6 x y^{2}+1\right ) y^{\prime }+2 y^{3}+1 = 0 \]

13927

\[ {} \frac {x y^{\prime \prime }}{y+1}+\frac {y y^{\prime }-x {y^{\prime }}^{2}+y^{\prime }}{\left (y+1\right )^{2}} = x \sin \left (x \right ) \]

13928

\[ {} \left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime \prime }-x {y^{\prime }}^{2} \sin \left (y\right )+2 \left (\cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime } = y \sin \left (x \right ) \]

13929

\[ {} y y^{\prime \prime } \sin \left (x \right )+\left (\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y\right ) y^{\prime } = \cos \left (x \right ) \]

13930

\[ {} \left (1-y\right ) y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

13931

\[ {} \left (\cos \left (y\right )-y \sin \left (y\right )\right ) y^{\prime \prime }-{y^{\prime }}^{2} \left (2 \sin \left (y\right )+y \cos \left (y\right )\right ) = \sin \left (x \right ) \]

13932

\[ {} y^{\prime \prime }+\frac {2 x y^{\prime }}{2 x -1}-\frac {4 x y}{\left (2 x -1\right )^{2}} = 0 \]

13933

\[ {} \left (x^{2}+2 x \right ) y^{\prime \prime }+\left (x^{2}+x +10\right ) y^{\prime } = \left (25-6 x \right ) y \]

13934

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{1+x}-\frac {\left (x +2\right ) y}{x^{2} \left (1+x \right )} = 0 \]

13935

\[ {} \left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x^{2}+4 x -3\right ) y^{\prime }+8 x y = 0 \]

13936

\[ {} \frac {\left (x^{2}-x \right ) y^{\prime \prime }}{x}+\frac {\left (3 x +1\right ) y^{\prime }}{x}+\frac {y}{x} = 3 x \]

13937

\[ {} \left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime \prime }+\left (7 \sin \left (x \right )+4 \cos \left (x \right )\right ) y^{\prime }+10 \cos \left (x \right ) y = 0 \]

13938

\[ {} y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{x}+\frac {y}{x^{3}} = \frac {{\mathrm e}^{-\frac {1}{x}}}{x^{3}} \]

13939

\[ {} y^{\prime \prime }+\left (5+2 x \right ) y^{\prime }+\left (4 x +8\right ) y = {\mathrm e}^{-2 x} \]

13940

\[ {} y^{\prime \prime }+9 y = 0 \]

13941

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

13942

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

13943

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

13944

\[ {} y^{\prime \prime }-y^{\prime }-6 y = 0 \]

13945

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+37 y = 0 \]

13946

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

13947

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

13948

\[ {} 4 y^{\prime \prime }-12 y^{\prime }+13 y = 0 \]

13949

\[ {} y^{\prime \prime }+4 y^{\prime }+13 y = 0 \]

13950

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

13951

\[ {} y^{\prime \prime \prime \prime }+y = 0 \]

13952

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

13953

\[ {} y^{\prime \prime }-20 y^{\prime }+51 y = 0 \]

13954

\[ {} 2 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

13955

\[ {} 3 y^{\prime \prime }+8 y^{\prime }-3 y = 0 \]

13956

\[ {} 2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]

13957

\[ {} 4 y^{\prime \prime }+40 y^{\prime }+101 y = 0 \]

13958

\[ {} y^{\prime \prime }+6 y^{\prime }+34 y = 0 \]

13959

\[ {} y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime } = 0 \]

13960

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0 \]

13961

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0 \]

13962

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0 \]

13963

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0 \]

13964

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0 \]

13965

\[ {} y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

13966

\[ {} y^{\prime \prime }+2 y^{\prime }+3 y = 9 t \]

13967

\[ {} 4 y^{\prime \prime }+16 y^{\prime }+17 y = 17 t -1 \]

13968

\[ {} 4 y^{\prime \prime }+5 y^{\prime }+4 y = 3 \,{\mathrm e}^{-t} \]

13969

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = t^{2} {\mathrm e}^{2 t} \]

13970

\[ {} y^{\prime \prime }+9 y = {\mathrm e}^{-2 t} \]

13971

\[ {} 2 y^{\prime \prime }-3 y^{\prime }+17 y = 17 t -1 \]

13972

\[ {} y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]

13973

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = t +2 \]

13974

\[ {} 2 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]

13975

\[ {} y^{\prime \prime }+8 y^{\prime }+20 y = \sin \left (2 t \right ) \]

13976

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = t^{2} \]

13977

\[ {} 2 y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (t \right ) \]

13978

\[ {} y^{\prime }-y = {\mathrm e}^{2 t} \]

13979

\[ {} 3 y^{\prime \prime }+5 y^{\prime }-2 y = 7 \,{\mathrm e}^{-2 t} \]

13980

\[ {} y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right ) \]

13981

\[ {} y^{\prime }-2 y = 4 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right )\right ) \]

13982

\[ {} y^{\prime \prime }+9 y = 24 \sin \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )+\operatorname {Heaviside}\left (t -\pi \right )\right ) \]

13983

\[ {} y^{\prime \prime }+2 y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right ) \]

13984

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]

13985

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 36 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )\right ) \]

13986

\[ {} y^{\prime \prime }+4 y^{\prime }+13 y = 39 \operatorname {Heaviside}\left (t \right )-507 \left (t -2\right ) \operatorname {Heaviside}\left (t -2\right ) \]

13987

\[ {} y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t \right )-3 \operatorname {Heaviside}\left (t -4\right )+\left (2 t -5\right ) \operatorname {Heaviside}\left (t -4\right ) \]

13988

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+5 y = 25 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]

13989

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )+\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -3\right ) \]

13990

\[ {} y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <1 \\ 6 & 1\le t \end {array}\right . \]

13991

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 1 & 1\le t <2 \\ -1 & 2\le t \end {array}\right . \]

13992

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t \end {array}\right . \]

13993

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <\pi \\ -t & \pi \le t \end {array}\right . \]

13994

\[ {} y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t & 0\le t <\frac {\pi }{2} \\ 8 \pi & \frac {\pi }{2}\le t \end {array}\right . \]

13995

\[ {} y^{\prime \prime }+4 \pi ^{2} y = 3 \delta \left (t -\frac {1}{3}\right )-\delta \left (t -1\right ) \]

13996

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 3 \delta \left (t -1\right ) \]

13997

\[ {} y^{\prime \prime }+4 y^{\prime }+29 y = 5 \delta \left (t -\pi \right )-5 \delta \left (t -2 \pi \right ) \]

13998

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 1-\delta \left (t -1\right ) \]

13999

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \delta \left (t -1\right ) \]

14000

\[ {} y^{\prime \prime }-7 y^{\prime }+6 y = \delta \left (t -1\right ) \]