|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} x -y+3+\left (3 x +y+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+\cos \left (\frac {x}{2}+\frac {y}{2}\right ) = \cos \left (\frac {x}{2}-\frac {y}{2}\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{2} y^{\prime }-y^{3} = \frac {x^{4}}{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2}+y^{2}-x y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x -y+2+\left (x -y+3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{2}+y-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2}+y^{2}+2 x +2 y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x -1\right ) \left (y^{2}-y+1\right ) = \left (-1+y\right ) \left (x^{2}+x +1\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x -2 x y-y^{2}\right ) y^{\prime }+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \cos \left (x \right ) y+\left (2 y-\sin \left (x \right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-1 = {\mathrm e}^{x +2 y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x^{5}+4 x^{3} y-2 x y^{2}+\left (y^{2}+2 x^{2} y-x^{4}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{n} y^{\prime } = 2 x y^{\prime }-y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (3 x +3 y+a^{2}\right ) y^{\prime } = 4 x +4 y+b^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x -y^{2}+2 x y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+y = y^{2} \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = \sqrt {\frac {9 y^{2}-6 y+2}{x^{2}-2 x +5}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (5 x -7 y+1\right ) y^{\prime }+x +y-1 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x +y+1+\left (2 x +2 y-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 4 x^{2} {y^{\prime }}^{2}-y^{2} = x y^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+{y^{\prime }}^{2} x -y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+y = 2 \cos \left (x \right )+2 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime \prime } = 2
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x -1\right ) y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{4} = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-3 y^{\prime }+2 y = 2
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}+y y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime \prime \prime } = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime } = x +\cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } \left (x +2\right )^{5} = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = x \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = 2 x \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime } = y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime } = y^{\prime }+x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x \ln \left (x \right ) y^{\prime \prime } = y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 y^{\prime \prime } = \frac {y^{\prime }}{x}+\frac {x^{2}}{y^{\prime }}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime } = \sqrt {1-{y^{\prime \prime }}^{2}}
\]
|
✓ |
✗ |
✓ |
|
|
\[
{} x y^{\prime \prime \prime }-y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = \sqrt {1-{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = \sqrt {1+y^{\prime }}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right )
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+y^{\prime }+2 = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = y^{\prime } \left (1+y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime \prime }+{y^{\prime \prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} 3 y^{\prime } y^{\prime \prime } = 2 y
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} 2 y^{\prime \prime } = 3 y^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}+y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{3} y^{\prime \prime } = -1
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = {\mathrm e}^{2 y}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime \prime } = 3 y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 y^{\prime \prime }-2 y^{\prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-4 y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\left (6\right )}+2 y^{\left (5\right )}+y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 4 y^{\prime \prime }-8 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+10 y^{\prime \prime }+12 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime }-5 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-6 y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\left (5\right )} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+3 y^{\prime } = 3
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-7 y^{\prime } = \left (x -1\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-8 y^{\prime }+16 y = \left (1-x \right ) {\mathrm e}^{4 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 x}
\]
|
✓ |
✓ |
✓ |
|