6.172 Problems 17101 to 17200

Table 6.343: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

17101

\[ {}y^{\prime \prime }-y^{\prime } = -5 \,{\mathrm e}^{-x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \]

17102

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 4 \,{\mathrm e}^{x} \cos \left (x \right ) \]

17103

\[ {}y^{\prime \prime \prime }-y^{\prime } = -2 x \]

17104

\[ {}y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

17105

\[ {}y^{\prime \prime \prime }-y = 2 x \]

17106

\[ {}y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

17107

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = \sin \left (x \right ) \]

17108

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \cos \left (2 x \right )+\sin \left (2 x \right ) \]

17109

\[ {}y^{\prime \prime }-y = 1 \]

17110

\[ {}y^{\prime \prime }-y = -2 \cos \left (x \right ) \]

17111

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{-x} \]

17112

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 8 \,{\mathrm e}^{x}+9 \]

17113

\[ {}y^{\prime \prime }-y^{\prime }-5 y = 1 \]

17114

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \,{\mathrm e}^{x} \left (\sin \left (x \right )+7 \cos \left (x \right )\right ) \]

17115

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{-2 x} \left (9 \sin \left (2 x \right )+4 \cos \left (2 x \right )\right ) \]

17116

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{-x} \left (9 x^{2}+5 x -12\right ) \]

17117

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

17118

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

17119

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+6 y = 0 \]

17120

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

17121

\[ {}\left (x +2\right )^{2} y^{\prime \prime }+3 \left (x +2\right ) y^{\prime }-3 y = 0 \]

17122

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y = 0 \]

17123

\[ {}x^{2} y^{\prime \prime \prime }-3 x y^{\prime \prime }+3 y^{\prime } = 0 \]

17124

\[ {}x^{2} y^{\prime \prime \prime } = 2 y^{\prime } \]

17125

\[ {}\left (1+x \right )^{2} y^{\prime \prime \prime }-12 y^{\prime } = 0 \]

17126

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime \prime }+2 \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } = 0 \]

17127

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = x \left (6-\ln \left (x \right )\right ) \]

17128

\[ {}x^{2} y^{\prime \prime }-2 y = \sin \left (\ln \left (x \right )\right ) \]

17129

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = -\frac {16 \ln \left (x \right )}{x} \]

17130

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = x^{2}-2 x +2 \]

17131

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

17132

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 2 \ln \left (x \right )^{2}+12 x \]

17133

\[ {}\left (1+x \right )^{3} y^{\prime \prime }+3 \left (1+x \right )^{2} y^{\prime }+\left (1+x \right ) y = 6 \ln \left (1+x \right ) \]

17134

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y = x \]

17135

\[ {}\left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

17136

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }-2 y = 0 \]

17137

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }-6 \left (1+x \right ) y^{\prime }+6 y = 6 \]

17138

\[ {}x^{2} \left (-1+\ln \left (x \right )\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

17139

\[ {}y^{\prime \prime }+\left (\tan \left (x \right )-2 \cot \left (x \right )\right ) y^{\prime }+2 \cot \left (x \right )^{2} y = 0 \]

17140

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

17141

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-y = 1 \]

17142

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = 5 x^{4} \]

17143

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = \left (x -1\right )^{2} {\mathrm e}^{x} \]

17144

\[ {}y^{\prime \prime }+y^{\prime }+{\mathrm e}^{-2 x} y = {\mathrm e}^{-3 x} \]

17145

\[ {}\left (x^{4}-x^{3}\right ) y^{\prime \prime }+\left (2 x^{3}-2 x^{2}-x \right ) y^{\prime }-y = \frac {\left (x -1\right )^{2}}{x} \]

17146

\[ {}y^{\prime \prime }-y^{\prime }+y \,{\mathrm e}^{2 x} = {\mathrm e}^{2 x} x -1 \]

17147

\[ {}x \left (x -1\right ) y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+2 y = x^{2} \left (2 x -3\right ) \]

17148

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )} \]

17149

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}} \]

17150

\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (x \right )^{3}} \]

17151

\[ {}y^{\prime \prime }+y = \frac {1}{\sqrt {\sin \left (x \right )^{5} \cos \left (x \right )}} \]

17152

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{2}+1} \]

17153

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{\sin \left (x \right )} \]

17154

\[ {}y^{\prime \prime }+y = \frac {2}{\sin \left (x \right )^{3}} \]

17155

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \]

17156

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = \frac {x -1}{x^{3}} \]

17157

\[ {}x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime } = 4 x^{3} {\mathrm e}^{x^{2}} \]

17158

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime } = 1 \]

17159

\[ {}x \ln \left (x \right ) y^{\prime \prime }-y^{\prime } = \ln \left (x \right )^{2} \]

17160

\[ {}x y^{\prime \prime }+\left (2 x -1\right ) y^{\prime } = -4 x^{2} \]

17161

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

17162

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 1 \]

17163

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = \frac {x +6}{x^{2}} \]

17164

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = \frac {1}{x^{2}+1} \]

17165

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (x -1\right )^{2} {\mathrm e}^{x} \]

17166

\[ {}2 x^{2} \left (2-\ln \left (x \right )\right ) y^{\prime \prime }+x \left (4-\ln \left (x \right )\right ) y^{\prime }-y = \frac {\left (2-\ln \left (x \right )\right )^{2}}{\sqrt {x}} \]

17167

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-y = 4 \,{\mathrm e}^{x} \]

17168

\[ {}x^{3} \left (-1+\ln \left (x \right )\right ) y^{\prime \prime }-x^{2} y^{\prime }+x y = 2 \ln \left (x \right ) \]

17169

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-2 \left (1-x \right ) y = 2 x -2 \]

17170

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]

17171

\[ {}x^{\prime \prime }+2 x^{\prime }+6 x = 0 \]

17172

\[ {}x^{\prime \prime }+2 x^{\prime }+x = 0 \]

17173

\[ {}x^{\prime \prime }+{x^{\prime }}^{2}+x = 0 \]

17174

\[ {}x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0 \]

17175

\[ {}x^{\prime \prime }-x \,{\mathrm e}^{x^{\prime }} = 0 \]

17176

\[ {}x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0 \]

17177

\[ {}x^{\prime \prime }+x {x^{\prime }}^{2} = 0 \]

17178

\[ {}x^{\prime \prime }+\left (x+2\right ) x^{\prime } = 0 \]

17179

\[ {}x^{\prime \prime }-x^{\prime }+x-x^{2} = 0 \]

17180

\[ {}y^{\prime \prime }+\lambda y = 0 \]

17181

\[ {}y^{\prime \prime }+\lambda y = 0 \]

17182

\[ {}y^{\prime \prime }-y = 0 \]

17183

\[ {}y^{\prime \prime }+y = 0 \]

17184

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

17185

\[ {}y^{\prime \prime }+y = 0 \]

17186

\[ {}y^{\prime \prime }-y = 0 \]

17187

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

17188

\[ {}y^{\prime \prime }+\alpha y^{\prime } = 0 \]

17189

\[ {}y^{\prime \prime }+\alpha ^{2} y = 1 \]

17190

\[ {}y^{\prime \prime }+y = 1 \]

17191

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]

17192

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]

17193

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

17194

\[ {}y^{\prime \prime \prime \prime }-\lambda ^{4} y = 0 \]

17195

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

17196

\[ {}x^{2} y^{\prime \prime \prime \prime }+4 x y^{\prime \prime \prime }+2 y^{\prime \prime } = 0 \]

17197

\[ {}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime } = 0 \]

17198

\[ {}y^{\prime } = 1-x y \]

17199

\[ {}y^{\prime } = \frac {y-x}{x +y} \]

17200

\[ {}y^{\prime } = y \sin \left (x \right ) \]