6.169 Problems 16801 to 16900

Table 6.337: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

16801

\[ {} x -y+3+\left (3 x +y+1\right ) y^{\prime } = 0 \]

16802

\[ {} y^{\prime }+\cos \left (\frac {x}{2}+\frac {y}{2}\right ) = \cos \left (\frac {x}{2}-\frac {y}{2}\right ) \]

16803

\[ {} y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0 \]

16804

\[ {} x y^{2} y^{\prime }-y^{3} = \frac {x^{4}}{3} \]

16805

\[ {} 1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

16806

\[ {} x^{2}+y^{2}-x y y^{\prime } = 0 \]

16807

\[ {} x -y+2+\left (x -y+3\right ) y^{\prime } = 0 \]

16808

\[ {} x y^{2}+y-x y^{\prime } = 0 \]

16809

\[ {} x^{2}+y^{2}+2 x +2 y y^{\prime } = 0 \]

16810

\[ {} \left (x -1\right ) \left (y^{2}-y+1\right ) = \left (-1+y\right ) \left (x^{2}+x +1\right ) y^{\prime } \]

16811

\[ {} \left (x -2 x y-y^{2}\right ) y^{\prime }+y^{2} = 0 \]

16812

\[ {} \cos \left (x \right ) y+\left (2 y-\sin \left (x \right )\right ) y^{\prime } = 0 \]

16813

\[ {} y^{\prime }-1 = {\mathrm e}^{x +2 y} \]

16814

\[ {} 2 x^{5}+4 x^{3} y-2 x y^{2}+\left (y^{2}+2 x^{2} y-x^{4}\right ) y^{\prime } = 0 \]

16815

\[ {} x^{2} y^{n} y^{\prime } = 2 x y^{\prime }-y \]

16816

\[ {} \left (3 x +3 y+a^{2}\right ) y^{\prime } = 4 x +4 y+b^{2} \]

16817

\[ {} x -y^{2}+2 x y y^{\prime } = 0 \]

16818

\[ {} x y^{\prime }+y = y^{2} \ln \left (x \right ) \]

16819

\[ {} \sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime } = 0 \]

16820

\[ {} y^{\prime } = \sqrt {\frac {9 y^{2}-6 y+2}{x^{2}-2 x +5}} \]

16821

\[ {} \left (5 x -7 y+1\right ) y^{\prime }+x +y-1 = 0 \]

16822

\[ {} x +y+1+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

16823

\[ {} y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \]

16824

\[ {} y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \]

16825

\[ {} 4 x^{2} {y^{\prime }}^{2}-y^{2} = x y^{3} \]

16826

\[ {} y^{\prime }+{y^{\prime }}^{2} x -y = 0 \]

16827

\[ {} y^{\prime \prime }+y = 2 \cos \left (x \right )+2 \sin \left (x \right ) \]

16828

\[ {} x y^{\prime \prime \prime } = 2 \]

16829

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \]

16830

\[ {} \left (x -1\right ) y^{\prime \prime } = 1 \]

16831

\[ {} {y^{\prime }}^{4} = 1 \]

16832

\[ {} y^{\prime \prime }+y = 0 \]

16833

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 2 \]

16834

\[ {} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

16835

\[ {} {y^{\prime }}^{2}+y y^{\prime \prime } = 1 \]

16836

\[ {} y^{\prime \prime \prime \prime } = x \]

16837

\[ {} y^{\prime \prime \prime } = x +\cos \left (x \right ) \]

16838

\[ {} y^{\prime \prime } \left (x +2\right )^{5} = 1 \]

16839

\[ {} y^{\prime \prime } = x \,{\mathrm e}^{x} \]

16840

\[ {} y^{\prime \prime } = 2 x \ln \left (x \right ) \]

16841

\[ {} x y^{\prime \prime } = y^{\prime } \]

16842

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

16843

\[ {} x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]

16844

\[ {} x y^{\prime \prime } = y^{\prime }+x^{2} \]

16845

\[ {} x \ln \left (x \right ) y^{\prime \prime } = y^{\prime } \]

16846

\[ {} x y = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

16847

\[ {} 2 y^{\prime \prime } = \frac {y^{\prime }}{x}+\frac {x^{2}}{y^{\prime }} \]

16848

\[ {} y^{\prime \prime \prime } = \sqrt {1-{y^{\prime \prime }}^{2}} \]

16849

\[ {} x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

16850

\[ {} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

16851

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \]

16852

\[ {} y^{\prime \prime } = \sqrt {1-{y^{\prime }}^{2}} \]

16853

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

16854

\[ {} y^{\prime \prime } = \sqrt {1+y^{\prime }} \]

16855

\[ {} y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right ) \]

16856

\[ {} y^{\prime \prime }+y^{\prime }+2 = 0 \]

16857

\[ {} y^{\prime \prime } = y^{\prime } \left (1+y^{\prime }\right ) \]

16858

\[ {} 3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

16859

\[ {} y^{\prime \prime \prime }+{y^{\prime \prime }}^{2} = 0 \]

16860

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \]

16861

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

16862

\[ {} 3 y^{\prime } y^{\prime \prime } = 2 y \]

16863

\[ {} 2 y^{\prime \prime } = 3 y^{2} \]

16864

\[ {} {y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

16865

\[ {} y y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{2} \]

16866

\[ {} y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

16867

\[ {} 2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

16868

\[ {} y^{3} y^{\prime \prime } = -1 \]

16869

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} y^{\prime } \]

16870

\[ {} y^{\prime \prime } = {\mathrm e}^{2 y} \]

16871

\[ {} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2} \]

16872

\[ {} y^{\prime \prime \prime } = 3 y y^{\prime } \]

16873

\[ {} y^{\prime \prime }-y = 0 \]

16874

\[ {} 3 y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

16875

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

16876

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16877

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

16878

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 0 \]

16879

\[ {} y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

16880

\[ {} y^{\left (6\right )}+2 y^{\left (5\right )}+y^{\prime \prime \prime \prime } = 0 \]

16881

\[ {} 4 y^{\prime \prime }-8 y^{\prime }+5 y = 0 \]

16882

\[ {} y^{\prime \prime \prime }-8 y = 0 \]

16883

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+10 y^{\prime \prime }+12 y^{\prime }+5 y = 0 \]

16884

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

16885

\[ {} y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]

16886

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime }-5 y = 0 \]

16887

\[ {} y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-6 y^{\prime }-4 y = 0 \]

16888

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]

16889

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime } = 0 \]

16890

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

16891

\[ {} y^{\left (5\right )} = 0 \]

16892

\[ {} y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

16893

\[ {} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime } = 0 \]

16894

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

16895

\[ {} y^{\prime \prime }+3 y^{\prime } = 3 \]

16896

\[ {} y^{\prime \prime }-7 y^{\prime } = \left (x -1\right )^{2} \]

16897

\[ {} y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x} \]

16898

\[ {} y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x} \]

16899

\[ {} y^{\prime \prime }-8 y^{\prime }+16 y = \left (1-x \right ) {\mathrm e}^{4 x} \]

16900

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 x} \]