6.176 Problems 17501 to 17600

Table 6.351: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

17501

\[ {}\left [x^{\prime }\left (t \right ) = -\frac {4 x \left (t \right )}{5}+2 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+\frac {6 y \left (t \right )}{5}\right ] \]

17502

\[ {}[x^{\prime }\left (t \right ) = a x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+a y \left (t \right )] \]

17503

\[ {}[x^{\prime }\left (t \right ) = -5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+a y \left (t \right )] \]

17504

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = a x \left (t \right )-2 y \left (t \right )] \]

17505

\[ {}\left [x^{\prime }\left (t \right ) = \frac {5 x \left (t \right )}{4}+\frac {3 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = a x \left (t \right )+\frac {5 y \left (t \right )}{4}\right ] \]

17506

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+a y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-y \left (t \right )] \]

17507

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )+a y \left (t \right ), y^{\prime }\left (t \right ) = -6 x \left (t \right )-4 y \left (t \right )] \]

17508

\[ {}[x^{\prime }\left (t \right ) = a x \left (t \right )+10 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-4 y \left (t \right )] \]

17509

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )+a y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )-6 y \left (t \right )] \]

17510

\[ {}\left [i^{\prime }\left (t \right ) = \frac {i \left (t \right )}{2}-\frac {v \left (t \right )}{8}, v^{\prime }\left (t \right ) = 2 i \left (t \right )-\frac {v \left (t \right )}{2}\right ] \]

17511

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

17512

\[ {}\left [x^{\prime }\left (t \right ) = \frac {5 x \left (t \right )}{4}+\frac {3 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = -\frac {3 x \left (t \right )}{4}-\frac {y \left (t \right )}{4}\right ] \]

17513

\[ {}\left [x^{\prime }\left (t \right ) = -\frac {3 x \left (t \right )}{2}+y \left (t \right ), y^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{4}-\frac {y \left (t \right )}{2}\right ] \]

17514

\[ {}\left [x^{\prime }\left (t \right ) = -3 x \left (t \right )+\frac {5 y \left (t \right )}{2}, y^{\prime }\left (t \right ) = -\frac {5 x \left (t \right )}{2}+2 y \left (t \right )\right ] \]

17515

\[ {}\left [x^{\prime }\left (t \right ) = -x \left (t \right )-\frac {y \left (t \right )}{2}, y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )\right ] \]

17516

\[ {}\left [x^{\prime }\left (t \right ) = 2 x \left (t \right )+\frac {y \left (t \right )}{2}, y^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{2}+y \left (t \right )\right ] \]

17517

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-7 y \left (t \right )] \]

17518

\[ {}\left [x^{\prime }\left (t \right ) = -\frac {5 x \left (t \right )}{2}+\frac {3 y \left (t \right )}{2}, y^{\prime }\left (t \right ) = -\frac {3 x \left (t \right )}{2}+\frac {y \left (t \right )}{2}\right ] \]

17519

\[ {}\left [x^{\prime }\left (t \right ) = 2 x \left (t \right )+\frac {3 y \left (t \right )}{2}, y^{\prime }\left (t \right ) = -\frac {3 x \left (t \right )}{2}-y \left (t \right )\right ] \]

17520

\[ {}\left [x^{\prime }\left (t \right ) = \frac {5 x \left (t \right )}{4}+\frac {3 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = -\frac {3 x \left (t \right )}{4}-\frac {y \left (t \right )}{4}\right ] \]

17521

\[ {}\left [x^{\prime }\left (t \right ) = -3 x \left (t \right )+\frac {5 y \left (t \right )}{2}, y^{\prime }\left (t \right ) = -\frac {5 x \left (t \right )}{2}+2 y \left (t \right )\right ] \]

17522

\[ {}\left [x^{\prime }\left (t \right ) = 2 x \left (t \right )+\frac {y \left (t \right )}{2}, y^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{2}+y \left (t \right )\right ] \]

17523

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )] \]

17524

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )] \]

17525

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )] \]

17526

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )] \]

17527

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )] \]

17528

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -8 x \left (t \right )] \]

17529

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

17530

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

17531

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-2 y \left (t \right )] \]

17532

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+x \left (t \right )^{2}, y^{\prime }\left (t \right ) = y \left (t \right )-2 x \left (t \right ) y \left (t \right )] \]

17533

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )^{2} y \left (t \right )-3 x \left (t \right )^{2}-4 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right ) y \left (t \right )^{2}+6 x \left (t \right ) y \left (t \right )] \]

17534

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-x \left (t \right )^{2}, y^{\prime }\left (t \right ) = 2 x \left (t \right ) y \left (t \right )-3 y \left (t \right )+2] \]

17535

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )+2 x \left (t \right ) y \left (t \right )] \]

17536

\[ {}[x^{\prime }\left (t \right ) = 2-y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )^{2}] \]

17537

\[ {}\left [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right )^{2}-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = \frac {y \left (t \right )}{2}-\frac {y \left (t \right )^{2}}{4}-\frac {3 x \left (t \right ) y \left (t \right )}{4}\right ] \]

17538

\[ {}[x^{\prime }\left (t \right ) = -\left (x \left (t \right )-y \left (t \right )\right ) \left (1-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = x \left (t \right ) \left (2+y \left (t \right )\right )] \]

17539

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ) \left (2-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = -x \left (t \right )-y \left (t \right )-2 x \left (t \right ) y \left (t \right )] \]

17540

\[ {}[x^{\prime }\left (t \right ) = \left (x \left (t \right )+2\right ) \left (y \left (t \right )-x \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )^{2}-y \left (t \right )^{2}] \]

17541

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+2 x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )^{2}-y \left (t \right )^{2}] \]

17542

\[ {}\left [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-\frac {x \left (t \right )^{3}}{5}-\frac {y \left (t \right )}{5}\right ] \]

17543

\[ {}x^{\prime } = \frac {x \sqrt {6 x-9}}{3} \]

17544

\[ {}\left [x^{\prime }\left (t \right ) = x \left (t \right ) \left (1-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right ) \left (\frac {3}{4}-y \left (t \right )-\frac {x \left (t \right )}{2}\right )\right ] \]

17545

\[ {}y^{\prime \prime }+t y = 0 \]

17546

\[ {}y^{\prime \prime }+y^{\prime }+y+y^{3} = 0 \]

17547

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\alpha \left (\alpha +1\right ) y = 0 \]

17548

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y = 0 \]

17549

\[ {}y^{\prime \prime }+\mu \left (1-y^{2}\right ) y^{\prime }+y = 0 \]

17550

\[ {}y^{\prime \prime }-t y = \frac {1}{\pi } \]

17551

\[ {}a \,x^{2} y^{\prime \prime }+b x y^{\prime }+c y = d \]

17552

\[ {}y^{\prime \prime }+y = 0 \]

17553

\[ {}y^{\prime \prime }+9 y = 0 \]

17554

\[ {}y^{\prime \prime }+y^{\prime }+16 y = 0 \]

17555

\[ {}y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

17556

\[ {}y^{\prime \prime }-y^{\prime }+4 y = 0 \]

17557

\[ {}t y^{\prime \prime }+3 y = t \]

17558

\[ {}\left (t -1\right ) y^{\prime \prime }-3 t y^{\prime }+4 y = \sin \left (t \right ) \]

17559

\[ {}t \left (t -4\right ) y^{\prime \prime }+3 t y^{\prime }+4 y = 2 \]

17560

\[ {}y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+3 \ln \left (t \right ) y = 0 \]

17561

\[ {}\left (x +3\right ) y^{\prime \prime }+x y^{\prime }+y \ln \left (x \right ) = 0 \]

17562

\[ {}\left (x -2\right ) y^{\prime \prime }+y^{\prime }+\left (x -2\right ) \tan \left (x \right ) y = 0 \]

17563

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\frac {\alpha \left (\alpha +1\right ) \mu ^{2} y}{-x^{2}+1} = 0 \]

17564

\[ {}y^{\prime \prime }-\frac {t}{y} = \frac {1}{\pi } \]

17565

\[ {}t^{2} y^{\prime \prime }-2 y = 0 \]

17566

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

17567

\[ {}y^{\prime \prime }+4 y = 0 \]

17568

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

17569

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

17570

\[ {}\left (1-x \cot \left (x \right )\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

17571

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

17572

\[ {}a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

17573

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

17574

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y = 0 \]

17575

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

17576

\[ {}t^{2} y^{\prime \prime }-t \left (2+t \right ) y^{\prime }+\left (2+t \right ) y = 0 \]

17577

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

17578

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

17579

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {3}{16}\right ) y = 0 \]

17580

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

17581

\[ {}x y^{\prime \prime }-\left (x +n \right ) y^{\prime }+n y = 0 \]

17582

\[ {}y^{\prime \prime }+a \left (x y^{\prime }+y\right ) = 0 \]

17583

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

17584

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

17585

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

17586

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

17587

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

17588

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

17589

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

17590

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

17591

\[ {}6 y^{\prime \prime }-y^{\prime }-y = 0 \]

17592

\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

17593

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 0 \]

17594

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

17595

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

17596

\[ {}4 y^{\prime \prime }-9 y = 0 \]

17597

\[ {}25 y^{\prime \prime }-20 y^{\prime }+4 y = 0 \]

17598

\[ {}y^{\prime \prime }-4 y^{\prime }+16 y = 0 \]

17599

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

17600

\[ {}y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4} = 0 \]