6.177 Problems 17601 to 17700

Table 6.353: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

17601

\[ {} y^{\prime \prime }+y = 2 \cos \left (w t \right ) \]

17602

\[ {} y^{\prime \prime }+y = 3 \cos \left (w t \right ) \]

17603

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (\frac {t}{4}\right ) \]

17604

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (2 t \right ) \]

17605

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (6 t \right ) \]

17606

\[ {} y^{\prime \prime }+y+\frac {y^{3}}{5} = \cos \left (w t \right ) \]

17607

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{5}+y+\frac {y^{3}}{5} = \cos \left (w t \right ) \]

17608

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{t} \]

17609

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t} \]

17610

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]

17611

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}} \]

17612

\[ {} y^{\prime \prime }+y = \tan \left (t \right ) \]

17613

\[ {} y^{\prime \prime }+4 y = 3 \sec \left (2 t \right )^{2} \]

17614

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}} \]

17615

\[ {} y^{\prime \prime }+4 y = 2 \csc \left (\frac {t}{2}\right ) \]

17616

\[ {} 4 y^{\prime \prime }+y = 2 \sec \left (2 t \right ) \]

17617

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t^{2}+1} \]

17618

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = g \left (t \right ) \]

17619

\[ {} y^{\prime \prime }+4 y = g \left (t \right ) \]

17620

\[ {} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 2 t^{3} \]

17621

\[ {} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t} \]

17622

\[ {} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

17623

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 3 x^{{3}/{2}} \sin \left (x \right ) \]

17624

\[ {} \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = g \left (x \right ) \]

17625

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right ) \]

17626

\[ {} t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

17627

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = \ln \left (x \right ) x^{2} \]

17628

\[ {} t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2} \]

17629

\[ {} t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t \]

17630

\[ {} y^{\prime \prime }+y = g \left (t \right ) \]

17631

\[ {} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }-y = t^{2} {\mathrm e}^{2 t} \]

17632

\[ {} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

17633

\[ {} y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

17634

\[ {} 9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

17635

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

17636

\[ {} 6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

17637

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = t^{2} {\mathrm e}^{t}+7 \]

17638

\[ {} y^{\prime \prime }-5 y^{\prime }-6 y = t^{2}+7 \]

17639

\[ {} y^{\prime \prime }+4 y = 3 \,{\mathrm e}^{-2 t} \sin \left (2 t \right ) \]

17640

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = t \cos \left (2 t \right ) \]

17641

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 0 \]

17642

\[ {} y^{\prime \prime \prime \prime }-6 y = t \,{\mathrm e}^{-t} \]

17643

\[ {} y^{\prime \prime }+16 y = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

17644

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]

17645

\[ {} y^{\prime \prime }+4 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \]

17646

\[ {} y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

17647

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = t \]

17648

\[ {} y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]

17649

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

17650

\[ {} y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]

17651

\[ {} y^{\prime \prime }+4 y^{\prime }+29 y = {\mathrm e}^{-2 t} \sin \left (5 t \right ) \]

17652

\[ {} y^{\prime \prime }+w^{2} y = \cos \left (2 t \right ) \]

17653

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = \cos \left (t \right ) \]

17654

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{-t} \]

17655

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 18 \,{\mathrm e}^{-t} \]

17656

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

17657

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

17658

\[ {} y^{\prime \prime \prime \prime }-9 y = 0 \]

17659

\[ {} [y_{1}^{\prime }\left (t \right ) = -5 y_{1} \left (t \right )+y_{2} \left (t \right ), y_{2}^{\prime }\left (t \right ) = -9 y_{1} \left (t \right )+5 y_{2} \left (t \right )] \]

17660

\[ {} [y_{1}^{\prime }\left (t \right ) = 5 y_{1} \left (t \right )-2 y_{2} \left (t \right ), y_{2}^{\prime }\left (t \right ) = 6 y_{1} \left (t \right )-2 y_{2} \left (t \right )] \]

17661

\[ {} [y_{1}^{\prime }\left (t \right ) = 4 y_{1} \left (t \right )-4 y_{2} \left (t \right ), y_{2}^{\prime }\left (t \right ) = 5 y_{1} \left (t \right )-4 y_{2} \left (t \right )] \]

17662

\[ {} [y_{1}^{\prime }\left (t \right ) = 6 y_{2} \left (t \right ), y_{2}^{\prime }\left (t \right ) = -6 y_{1} \left (t \right )] \]

17663

\[ {} [y_{1}^{\prime }\left (t \right ) = -4 y_{1} \left (t \right )-y_{2} \left (t \right ), y_{2}^{\prime }\left (t \right ) = y_{1} \left (t \right )-2 y_{2} \left (t \right )] \]

17664

\[ {} [y_{1}^{\prime }\left (t \right ) = 2 y_{1} \left (t \right )-64 y_{2} \left (t \right ), y_{2}^{\prime }\left (t \right ) = y_{1} \left (t \right )-14 y_{2} \left (t \right )] \]

17665

\[ {} [y_{1}^{\prime }\left (t \right ) = -4 y_{1} \left (t \right )-y_{2} \left (t \right )+2 \,{\mathrm e}^{t}, y_{2}^{\prime }\left (t \right ) = y_{1} \left (t \right )-2 y_{2} \left (t \right )+\sin \left (2 t \right )] \]

17666

\[ {} [y_{1}^{\prime }\left (t \right ) = 5 y_{1} \left (t \right )-y_{2} \left (t \right )+{\mathrm e}^{-t}, y_{2}^{\prime }\left (t \right ) = y_{1} \left (t \right )+3 y_{2} \left (t \right )+2 \,{\mathrm e}^{t}] \]

17667

\[ {} [y_{1}^{\prime }\left (t \right ) = -y_{1} \left (t \right )-5 y_{2} \left (t \right )+3, y_{2}^{\prime }\left (t \right ) = y_{1} \left (t \right )+3 y_{2} \left (t \right )+5 \cos \left (t \right )] \]

17668

\[ {} [y_{1}^{\prime }\left (t \right ) = -2 y_{1} \left (t \right )+y_{2} \left (t \right ), y_{2}^{\prime }\left (t \right ) = y_{1} \left (t \right )-2 y_{2} \left (t \right )+\sin \left (t \right )] \]

17669

\[ {} [y_{1}^{\prime }\left (t \right ) = y_{2} \left (t \right )-y_{3} \left (t \right ), y_{2}^{\prime }\left (t \right ) = y_{1} \left (t \right )+y_{3} \left (t \right )-{\mathrm e}^{-t}, y_{3}^{\prime }\left (t \right ) = y_{1} \left (t \right )+y_{2} \left (t \right )+{\mathrm e}^{t}] \]

17670

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \]

17671

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t \le 2 \pi \\ 0 & t \le 2 \pi \end {array}\right . \]

17672

\[ {} y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]

17673

\[ {} y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -\pi \right ) \sin \left (t \right ) \]

17674

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & 10\le t \end {array}\right . \]

17675

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \operatorname {Heaviside}\left (t -2\right ) \]

17676

\[ {} y^{\prime \prime }+y = \operatorname {Heaviside}\left (t -3 \pi \right ) \]

17677

\[ {} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \]

17678

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} \frac {t}{2} & 0\le t <6 \\ 3 & 6\le t \end {array}\right . \]

17679

\[ {} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

17680

\[ {} y^{\prime \prime }+4 y = \operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -3 \pi \right ) \]

17681

\[ {} y^{\prime \prime \prime \prime }-y = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]

17682

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]

17683

\[ {} u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right )}{2} \]

17684

\[ {} u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right . \]

17685

\[ {} u^{\prime \prime }+\frac {u^{\prime }}{4}+u = 2 \left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right ) \]

17686

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (t -\pi \right ) \]

17687

\[ {} y^{\prime \prime }+4 y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]

17688

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \delta \left (t -\pi \right )+\operatorname {Heaviside}\left (t -10\right ) \]

17689

\[ {} y^{\prime \prime }-y = -20 \delta \left (t -3\right ) \]

17690

\[ {} y^{\prime \prime }+2 y^{\prime }+3 y = \sin \left (t \right )+\delta \left (t -3 \pi \right ) \]

17691

\[ {} y^{\prime \prime }+4 y = \delta \left (t -4 \pi \right ) \]

17692

\[ {} y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \cos \left (t \right ) \]

17693

\[ {} y^{\prime \prime }+4 y = 2 \delta \left (t -\frac {\pi }{4}\right ) \]

17694

\[ {} y^{\prime \prime }+y = \operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )+3 \delta \left (t -\frac {3 \pi }{2}\right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \]

17695

\[ {} 2 y^{\prime \prime }+y^{\prime }+6 y = \delta \left (t -\frac {\pi }{6}\right ) \sin \left (t \right ) \]

17696

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \cos \left (t \right )+\delta \left (t -\frac {\pi }{2}\right ) \]

17697

\[ {} y^{\prime \prime \prime \prime }-y = \delta \left (t -1\right ) \]

17698

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{2}+y = \delta \left (t -1\right ) \]

17699

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{4}+y = \delta \left (t -1\right ) \]

17700

\[ {} y^{\prime \prime }+y = \delta \left (t -1\right ) \]