6.181 Problems 18001 to 18100

Table 6.361: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

18001

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 2 x^{3} \]

18002

\[ {}y^{\prime \prime }+\frac {x y^{\prime }}{1-x}-\frac {y}{1-x} = x -1 \]

18003

\[ {}\left (x^{2}+2\right ) y^{\prime \prime \prime }-2 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }-2 x y = x^{4}+12 \]

18004

\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \]

18005

\[ {}y^{\prime \prime }+y = 0 \]

18006

\[ {}y^{\prime \prime }+\frac {y}{\ln \left (x \right ) x^{2}} = {\mathrm e}^{x} \left (\frac {2}{x}+\ln \left (x \right )\right ) \]

18007

\[ {}y^{\prime \prime }+p_{1} y^{\prime }+p_{2} y = 0 \]

18008

\[ {}\left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

18009

\[ {}y^{\prime \prime } \sin \left (x \right )^{2}+\sin \left (x \right ) \cos \left (x \right ) y^{\prime } = y \]

18010

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0 \]

18011

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

18012

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

18013

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

18014

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

18015

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

18016

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = x^{2} \]

18017

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{x}+{\mathrm e}^{2 x} \]

18018

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = x \,{\mathrm e}^{x} \]

18019

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = \left (1+x \right ) {\mathrm e}^{x} \]

18020

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) x \]

18021

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) \]

18022

\[ {}y^{\prime \prime }-y = \frac {{\mathrm e}^{x}-{\mathrm e}^{-x}}{{\mathrm e}^{x}+{\mathrm e}^{-x}} \]

18023

\[ {}y^{\prime \prime }-2 y = 4 x^{2} {\mathrm e}^{x^{2}} \]

18024

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \sin \left (2 x \right ) \]

18025

\[ {}y^{\prime \prime }+9 y = \ln \left (2 \sin \left (\frac {x}{2}\right )\right ) \]

18026

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {n \left (n +1\right ) y}{x^{2}} = 0 \]

18027

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x \]

18028

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = x \ln \left (x \right ) \]

18029

\[ {}x^{2} y^{\prime \prime }-2 y = x^{2}+\frac {1}{x} \]

18030

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{3}+3 x \]

18031

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 4 \cos \left (\ln \left (1+x \right )\right ) \]

18032

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+\left (1-\frac {m^{2}}{x^{2}}\right ) y = 0 \]

18033

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

18034

\[ {}y^{\prime \prime }+\frac {2 p y^{\prime }}{x}+y = 0 \]

18035

\[ {}x y^{\prime \prime }-y^{\prime }-x^{3} y = 0 \]

18036

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right ) \]

18037

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {y \left (-8+\sqrt {x}+x \right )}{4 x^{2}} = 0 \]

18038

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )] \]

18039

\[ {}[y^{\prime }\left (x \right ) = y \left (x \right )+z \left (x \right ), z^{\prime }\left (x \right ) = y \left (x \right )+z \left (x \right )+x] \]

18040

\[ {}\left [y^{\prime }\left (x \right ) = \frac {y \left (x \right )^{2}}{z \left (x \right )}, z^{\prime }\left (x \right ) = \frac {y \left (x \right )}{2}\right ] \]

18041

\[ {}\left [y^{\prime }\left (x \right ) = 1-\frac {1}{z \left (x \right )}, z^{\prime }\left (x \right ) = \frac {1}{y \left (x \right )-x}\right ] \]

18042

\[ {}[y^{\prime }\left (x \right ) = -z \left (x \right ), z^{\prime }\left (x \right ) = y \left (x \right )] \]

18043

\[ {}y^{\prime \prime } = y^{2}+x \]

18044

\[ {}y^{\prime \prime }+2 y^{\prime }+y^{2} = 0 \]

18045

\[ {}\left [y^{\prime }\left (x \right ) = \frac {z \left (x \right )^{2}}{y \left (x \right )}, z^{\prime }\left (x \right ) = \frac {y \left (x \right )^{2}}{z \left (x \right )}\right ] \]

18046

\[ {}\left [y^{\prime }\left (x \right ) = \frac {y \left (x \right )^{2}}{z \left (x \right )}, z^{\prime }\left (x \right ) = \frac {z \left (x \right )^{2}}{y \left (x \right )}\right ] \]

18047

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-z \left (t \right )] \]

18048

\[ {}[x^{\prime }\left (t \right )+x \left (t \right )+y \left (t \right ) = t^{2}, y^{\prime }\left (t \right )+y \left (t \right )+z \left (t \right ) = 2 t, z^{\prime }\left (t \right )+z \left (t \right ) = t] \]

18049

\[ {}[x^{\prime }\left (t \right )+5 x \left (t \right )+y \left (t \right ) = 7 \,{\mathrm e}^{t}-27, y^{\prime }\left (t \right )-2 x \left (t \right )+3 y \left (t \right ) = -3 \,{\mathrm e}^{t}+12] \]

18050

\[ {}[y^{\prime \prime }\left (x \right )+z^{\prime }\left (x \right )-2 z \left (x \right ) = {\mathrm e}^{2 x}, z^{\prime }\left (x \right )+2 y^{\prime }\left (x \right )-3 y \left (x \right ) = 0] \]

18051

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+{\mathrm e}^{t}+{\mathrm e}^{-t}] \]

18052

\[ {}\left [y^{\prime }\left (x \right )+\frac {2 z \left (x \right )}{x^{2}} = 1, z^{\prime }\left (x \right )+y \left (x \right ) = x\right ] \]

18053

\[ {}[t x^{\prime }\left (t \right )-x \left (t \right )-3 y \left (t \right ) = t, t y^{\prime }\left (t \right )-x \left (t \right )+y \left (t \right ) = 0] \]

18054

\[ {}[t x^{\prime }\left (t \right )+6 x \left (t \right )-y \left (t \right )-3 z \left (t \right ) = 0, t y^{\prime }\left (t \right )+23 x \left (t \right )-6 y \left (t \right )-9 z \left (t \right ) = 0, t z^{\prime }\left (t \right )+x \left (t \right )+y \left (t \right )-2 z \left (t \right ) = 0] \]

18055

\[ {}[x^{\prime }\left (t \right )+5 x \left (t \right )+y \left (t \right ) = {\mathrm e}^{t}, y^{\prime }\left (t \right )+3 y \left (t \right )-x \left (t \right ) = {\mathrm e}^{2 t}] \]

18056

\[ {}y^{\prime } = 2 x \]

18057

\[ {}x y^{\prime } = 2 y \]

18058

\[ {}y y^{\prime } = {\mathrm e}^{2 x} \]

18059

\[ {}y^{\prime } = k y \]

18060

\[ {}y^{\prime \prime }+4 y = 0 \]

18061

\[ {}y^{\prime \prime }-4 y = 0 \]

18062

\[ {}x y^{\prime }+y = y^{\prime } \sqrt {1-x^{2} y^{2}} \]

18063

\[ {}x y^{\prime } = y+x^{2}+y^{2} \]

18064

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

18065

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

18066

\[ {}x y^{\prime }+y = x^{4} {y^{\prime }}^{2} \]

18067

\[ {}y^{\prime } = \frac {y^{2}}{x y-x^{2}} \]

18068

\[ {}\left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime } = y \]

18069

\[ {}1+y^{2}+y^{\prime } y^{2} = 0 \]

18070

\[ {}y^{\prime } = {\mathrm e}^{3 x}-x \]

18071

\[ {}x y^{\prime } = 1 \]

18072

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

18073

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

18074

\[ {}\left (1+x \right ) y^{\prime } = x \]

18075

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \]

18076

\[ {}\left (x^{3}+1\right ) y^{\prime } = x \]

18077

\[ {}\left (x^{2}+1\right ) y^{\prime } = \arctan \left (x \right ) \]

18078

\[ {}x y y^{\prime } = y-1 \]

18079

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

18080

\[ {}x y^{\prime } = \left (-2 x^{2}+1\right ) \tan \left (y\right ) \]

18081

\[ {}y^{\prime } = 2 x y \]

18082

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

18083

\[ {}\sin \left (x \right ) y^{\prime } = 1 \]

18084

\[ {}y^{\prime }+\tan \left (x \right ) y = 0 \]

18085

\[ {}y^{\prime }-\tan \left (x \right ) y = 0 \]

18086

\[ {}\left (x^{2}+1\right ) y^{\prime }+1+y^{2} = 0 \]

18087

\[ {}y \ln \left (y\right )-x y^{\prime } = 0 \]

18088

\[ {}y^{\prime } = x \,{\mathrm e}^{x} \]

18089

\[ {}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right ) \]

18090

\[ {}y^{\prime } = \ln \left (x \right ) \]

18091

\[ {}\left (x^{2}-1\right ) y^{\prime } = 1 \]

18092

\[ {}x \left (x^{2}-4\right ) y^{\prime } = 1 \]

18093

\[ {}\left (1+x \right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \]

18094

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]

18095

\[ {}x y^{\prime } = 2 x^{2}+1 \]

18096

\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

18097

\[ {}3 \cos \left (3 x \right ) \cos \left (2 y\right )-2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime } = 0 \]

18098

\[ {}y^{\prime } = {\mathrm e}^{x} \cos \left (x \right ) \]

18099

\[ {}x y y^{\prime } = \left (1+x \right ) \left (1+y\right ) \]

18100

\[ {}y^{\prime } = 2 x y+1 \]