|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} \left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y = \left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x y^{\prime }-y\right ) \left (x +y y^{\prime }\right ) = h^{2} y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{2}-3 x y y^{\prime } = 2 y^{2}+x^{3}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2}-2 x y y^{\prime }+{y^{\prime }}^{2} \left (x^{2}-1\right ) = m
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y = x y^{\prime }-{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 4 {y^{\prime }}^{2} = 9 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 4 x \left (x -1\right ) \left (x -2\right ) {y^{\prime }}^{2}-\left (3 x^{2}-6 x +2\right )^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (8 {y^{\prime }}^{3}-27\right ) x = \frac {12 {y^{\prime }}^{2}}{x}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 3 y = 2 x y^{\prime }-\frac {2 {y^{\prime }}^{2}}{x}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{2}+{y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2} \left (2-3 y\right )^{2} = 4-4 y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 4 x {y^{\prime }}^{2} = \left (3 x -1\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x {y^{\prime }}^{2}-\left (-a +x \right )^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {y^{\prime }}^{2}+2 x^{3} y^{\prime }-4 x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2} \left (y-x y^{\prime }\right ) = x^{4} {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2} \left (-a^{2}+x^{2}\right )-2 x y y^{\prime }-x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{4} = 4 y \left (x y^{\prime }-2 y\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (1-y^{2}\right ) {y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y+x^{2} = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{3} = y^{4} \left (x y^{\prime }+y\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (1-y^{\prime }\right )^{2}-{\mathrm e}^{-2 y} = {y^{\prime }}^{2} {\mathrm e}^{-2 x}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} a x y {y^{\prime }}^{2}+\left (x^{2}-y^{2} a -b \right ) y^{\prime }-x y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} {y^{\prime }}^{2} = \left (4 y+1\right ) \left (y^{\prime }-y\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+b^{2}-y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}-1\right ) y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}-h^{2}\right ) y^{\prime }-x y = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} 8 {y^{\prime }}^{3} x = y \left (12 {y^{\prime }}^{2}-9\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 4 {y^{\prime }}^{2} x^{2} \left (x -1\right )-4 y^{\prime } x y \left (4 x -3\right )+\left (16 x -9\right ) y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (y^{2}+x^{2} y^{\prime }\right ) \left (x y^{\prime }+y\right ) = \left (1+y^{\prime }\right )^{2}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y-x y^{\prime } = a \left (y^{2}+y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y-x y^{\prime } = b \left (1+x^{2} y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x y^{\prime }-y\right ) \left (x -y y^{\prime }\right ) = 2 y^{\prime }
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-x y^{\prime }+y = 2 \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime \prime }-2 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = \ln \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}} = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }-4 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-x y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+2 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+y = 3 x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+7 x y^{\prime }+5 y = x^{5}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = x^{4}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = x^{4}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{m}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+2 x y^{\prime } = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+2 y^{\prime } = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 4 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 x y^{\prime }+2 y = x^{2}+3 x -4
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }-20 y = \left (1+x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = x^{2}+\frac {1}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+y = x +\ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = x \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-3 x y^{\prime }+5 y = x^{2} \sin \left (\ln \left (x \right )\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = x \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \left (\ln \left (x \right )+1\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5+2 x \right ) y^{\prime }+8 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime } = \left (2 x +3\right ) \left (2 x +4\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime }+2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+{\mathrm e}^{x} \left (y^{\prime }+y\right ) = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 x y^{\prime }+2 y = x^{2}+3 x -4
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 y \,{\mathrm e}^{x} = x^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}-x \right ) y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}-x \right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 2 x
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (2 x^{2}+3 x \right ) y^{\prime \prime }+\left (6 x +3\right ) y^{\prime }+2 y = \left (1+x \right ) {\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y y^{\prime \prime }+x {y^{\prime }}^{2}+y y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (-b \,x^{2}+a x \right ) y^{\prime \prime }+2 a y^{\prime }+2 b y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 \sin \left (x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime \prime }+4 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }+3 x y = 2
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{5} y^{\left (6\right )}+x^{4} y^{\left (5\right )}+x y^{\prime }+y = \ln \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+3 x^{2} y = 2 x
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y = x^{4}+2 x -5
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime \prime } = f \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2}+\left (2 x y-1\right ) y^{\prime }+x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime } = x +\sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = x \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } \cos \left (x \right )^{2} = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = \frac {a}{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime } \csc \left (x \right )^{2} = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } \sqrt {a^{2}+x^{2}} = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime } = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{3} y^{\prime \prime } = a
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-a^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+\frac {a^{2}}{y} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = y^{3}-y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = {\mathrm e}^{2 y}
\]
|
✓ |
✓ |
✗ |
|