6.196 Problems 19501 to 19600

Table 6.391: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

19501

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-\left (4 x^{2}-3 x -5\right ) y^{\prime }+\left (4 x^{2}-6 x -5\right ) y = {\mathrm e}^{2 x} \]

19502

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime } = m^{2} y \]

19503

\[ {}y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x} = 4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \]

19504

\[ {}x y^{\prime \prime }+\left (x^{2}+1\right ) y^{\prime }+2 x y = 2 x \]

19505

\[ {}\left (x +2\right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y = \left (1+x \right ) {\mathrm e}^{x} \]

19506

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-y = x \left (-x^{2}+1\right )^{{3}/{2}} \]

19507

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (x +2\right ) y = 0 \]

19508

\[ {}[t x^{\prime }\left (t \right )+y \left (t \right ) = 0, t y^{\prime }\left (t \right )+x \left (t \right ) = 0] \]

19509

\[ {}-x y^{\prime }+y = 0 \]

19510

\[ {}\cot \left (y\right )-\tan \left (x \right ) y^{\prime } = 0 \]

19511

\[ {}x^{3}+x y^{2}+a^{2} y+\left (y^{3}+x^{2} y-x \,a^{2}\right ) y^{\prime } = 0 \]

19512

\[ {}\left (x +2 y^{3}\right ) y^{\prime } = y \]

19513

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

19514

\[ {}1+y^{2}-x y y^{\prime } = 0 \]

19515

\[ {}y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

19516

\[ {}y^{\prime } = \frac {6 x -2 y-7}{2 x +3 y-6} \]

19517

\[ {}2 x +y+1+\left (4 x +2 y-1\right ) y^{\prime } = 0 \]

19518

\[ {}\cos \left (x \right ) y^{\prime }+y \sin \left (x \right ) = 1 \]

19519

\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

19520

\[ {}\left (x +2 y^{3}\right ) y^{\prime } = y \]

19521

\[ {}y^{\prime }+p \left (x \right ) y = q \left (x \right ) y^{n} \]

19522

\[ {}y^{\prime }+x \sin \left (2 y\right ) = x^{3} \cos \left (y\right )^{2} \]

19523

\[ {}a^{2}-2 x y-y^{2}-\left (x +y\right )^{2} y^{\prime } = 0 \]

19524

\[ {}x^{2} y-\left (y^{3}+x^{3}\right ) y^{\prime } = 0 \]

19525

\[ {}\left (x y \sin \left (x y\right )+\cos \left (x y\right )\right ) y+\left (x y \sin \left (x y\right )-\cos \left (x y\right )\right ) y^{\prime } = 0 \]

19526

\[ {}y+\frac {y^{3}}{3}+\frac {x^{2}}{2}+\frac {\left (x y^{2}+x \right ) y^{\prime }}{4} = 0 \]

19527

\[ {}3 x^{2} y^{4}+2 x y+\left (2 y^{2} x^{3}-x^{2}\right ) y^{\prime } = 0 \]

19528

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

19529

\[ {}2 y^{\prime \prime }+9 y^{\prime }-18 y = 0 \]

19530

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0 \]

19531

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

19532

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \]

19533

\[ {}y^{\prime \prime }+n^{2} y = \sec \left (n x \right ) \]

19534

\[ {}y^{\prime \prime \prime }+y = \left (1+{\mathrm e}^{x}\right )^{2} \]

19535

\[ {}y^{\prime \prime }-4 y^{\prime }+y = a \cos \left (2 x \right ) \]

19536

\[ {}y^{\prime \prime \prime }+a^{2} y^{\prime } = \sin \left (a x \right ) \]

19537

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = {\mathrm e}^{x}+\cos \left (x \right ) \]

19538

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \sin \left (x \right ) \]

19539

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2} \]

19540

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{2} {\mathrm e}^{3 x} \]

19541

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \sinh \left (2 x \right ) \]

19542

\[ {}y^{\prime \prime }+a^{2} y = \cos \left (a x \right ) \]

19543

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \sin \left (x \right ) \]

19544

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x^{3} y+x^{2} y^{2}+x y^{3}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

19545

\[ {}x^{2} \left ({y^{\prime }}^{2}-y^{2}\right )+y^{2} = x^{4}+2 x y y^{\prime } \]

19546

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{3}+b x \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-y^{\prime }-b x = 0 \]

19547

\[ {}{y^{\prime }}^{3} \left (x +2 y\right )+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (y+2 x \right ) y^{\prime } = 0 \]

19548

\[ {}y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = b \]

19549

\[ {}y = \frac {x}{y^{\prime }}-a y^{\prime } \]

19550

\[ {}{y^{\prime }}^{3}+m {y^{\prime }}^{2} = a \left (y+m x \right ) \]

19551

\[ {}{y^{\prime }}^{3} x = a +b y^{\prime } \]

19552

\[ {}y^{\prime } = \tan \left (x -\frac {y^{\prime }}{1+{y^{\prime }}^{2}}\right ) \]

19553

\[ {}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0 \]

19554

\[ {}y = \left (1+y^{\prime }\right ) x +{y^{\prime }}^{2} \]

19555

\[ {}{\mathrm e}^{3 x} \left (y^{\prime }-1\right )+{y^{\prime }}^{3} {\mathrm e}^{2 y} = 0 \]

19556

\[ {}y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

19557

\[ {}y = -x y^{\prime }+x^{4} {y^{\prime }}^{2} \]

19558

\[ {}y-2 x y^{\prime }+a y {y^{\prime }}^{2} = 0 \]

19559

\[ {}x^{2} \left (-x y^{\prime }+y\right ) = y {y^{\prime }}^{2} \]

19560

\[ {}x y \left (-x y^{\prime }+y\right ) = x +y y^{\prime } \]

19561

\[ {}x y^{2} \left ({y^{\prime }}^{2}+2\right ) = 2 y^{\prime } y^{3}+x^{3} \]

19562

\[ {}3 y {y^{\prime }}^{2}-2 x y y^{\prime }+4 y^{2}-x^{2} = 0 \]

19563

\[ {}\left (y y^{\prime }+n x \right )^{2} = \left (y^{2}+n \,x^{2}\right ) \left (1+{y^{\prime }}^{2}\right ) \]

19564

\[ {}\left (1-y^{2}+\frac {y^{4}}{x^{2}}\right ) {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+\frac {y^{2}}{x^{2}} = 0 \]

19565

\[ {}\left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (x +y y^{\prime }\right )+\left (x +y y^{\prime }\right )^{2} = 0 \]

19566

\[ {}{y^{\prime }}^{2} \left (-x^{2}+1\right ) = 1-y^{2} \]

19567

\[ {}y^{2} \left (1+{y^{\prime }}^{2}\right ) = r^{2} \]

19568

\[ {}\sin \left (x y^{\prime }\right ) \cos \left (y\right ) = \cos \left (x y^{\prime }\right ) \sin \left (y\right )+y^{\prime } \]

19569

\[ {}4 x {y^{\prime }}^{2} = \left (3 x -a \right )^{2} \]

19570

\[ {}4 {y^{\prime }}^{2} x \left (x -a \right ) \left (x -b \right ) = \left (3 x^{2}-2 x \left (a +b \right )+a b \right )^{2} \]

19571

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

19572

\[ {}{y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

19573

\[ {}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a^{3} = 0 \]

19574

\[ {}x^{2} {y^{\prime }}^{3}+y y^{\prime } \left (y+2 x \right )+y^{2} = 0 \]

19575

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0 \]

19576

\[ {}{y^{\prime }}^{2} y^{2} \cos \left (a \right )^{2}-2 y^{\prime } x y \sin \left (a \right )^{2}+y^{2}-x^{2} \sin \left (a \right )^{2} = 0 \]

19577

\[ {}\left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x y+x^{2}+2\right ) y^{\prime }+2 y^{2}+1 = 0 \]

19578

\[ {}x^{4} y^{\prime \prime \prime }+2 x^{3} y^{\prime \prime }-x^{2} y^{\prime }+x y = 1 \]

19579

\[ {}x^{2} y^{\prime \prime }-2 y = x^{2}+\frac {1}{x} \]

19580

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{2}+3 x \]

19581

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]

19582

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

19583

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 2 x^{2} \]

19584

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 x +\frac {10}{x} \]

19585

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}} \]

19586

\[ {}\left (2 x -1\right )^{3} y^{\prime \prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y = 0 \]

19587

\[ {}\left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y = x \]

19588

\[ {}16 \left (1+x \right )^{4} y^{\prime \prime \prime \prime }+96 \left (1+x \right )^{3} y^{\prime \prime \prime }+104 \left (1+x \right )^{2} y^{\prime \prime }+8 \left (1+x \right ) y^{\prime }+y = x^{2}+4 x +3 \]

19589

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 4 \cos \left (\ln \left (1+x \right )\right ) \]

19590

\[ {}2 x^{2} y y^{\prime \prime }+4 y^{2} = x^{2} {y^{\prime }}^{2}+2 x y y^{\prime } \]

19591

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+\left (m^{2}+n^{2}\right ) y = n^{2} x^{m} \ln \left (x \right ) \]

19592

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+y = \frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \]

19593

\[ {}\left (x^{2}+x +1\right ) y^{\prime \prime \prime }+\left (3+6 x \right ) y^{\prime \prime }+6 y^{\prime } = 0 \]

19594

\[ {}\left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = \frac {2}{x^{3}} \]

19595

\[ {}y^{\prime \prime \prime }+\cos \left (x \right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }-y \cos \left (x \right ) = \sin \left (2 x \right ) \]

19596

\[ {}\sqrt {x}\, y^{\prime \prime }+2 x y^{\prime }+3 y = x \]

19597

\[ {}2 x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (7 x +3\right ) y^{\prime }-3 y = x^{2} \]

19598

\[ {}2 x^{2} \cos \left (y\right ) y^{\prime \prime }-2 x^{2} \sin \left (y\right ) {y^{\prime }}^{2}+x \cos \left (y\right ) y^{\prime }-\sin \left (y\right ) = \ln \left (x \right ) \]

19599

\[ {}x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2}-3 y^{2} = 0 \]

19600

\[ {}y+3 x y^{\prime }+2 y {y^{\prime }}^{2}+\left (x^{2}+2 y^{\prime } y^{2}\right ) y^{\prime \prime } = 0 \]