6.45 Problems 4401 to 4500

Table 6.89: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

4401

\[ {} 2 \sqrt {x y}-y-x y^{\prime } = 0 \]

4402

\[ {} y^{\prime } = {\mathrm e}^{\frac {x y^{\prime }}{y}} \]

4403

\[ {} 2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime } = 0 \]

4404

\[ {} y-1-x y+x y^{\prime } = 0 \]

4405

\[ {} x y^{\prime }-y = x \tan \left (\frac {y}{x}\right ) \]

4406

\[ {} y^{\prime }+\frac {y}{x} = {\mathrm e}^{x y} \]

4407

\[ {} y y^{\prime \prime }-y y^{\prime } = {y^{\prime }}^{2} \]

4408

\[ {} 2 y-x \left (\ln \left (x^{2} y\right )-1\right ) y^{\prime } = 0 \]

4409

\[ {} y^{\prime } = \frac {1}{x y+x^{3} y^{3}} \]

4410

\[ {} y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \]

4411

\[ {} {\mathrm e}^{x}+3 y^{2}+2 x y y^{\prime } = 0 \]

4412

\[ {} x y+2 x^{3} y+x^{2} y^{\prime } = 0 \]

4413

\[ {} x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

4414

\[ {} y^{\prime \prime \prime } = 2 \left (y^{\prime \prime }-1\right ) \cot \left (x \right ) \]

4415

\[ {} y+3 x^{4} y^{2}+\left (x +2 x^{2} y^{3}\right ) y^{\prime } = 0 \]

4416

\[ {} x y^{\prime } = y+\sqrt {x^{2}-y^{2}} \]

4417

\[ {} 2 y \left (x \,{\mathrm e}^{x^{2}}+y \sin \left (x \right ) \cos \left (x \right )\right )+\left (2 \,{\mathrm e}^{x^{2}}+3 y \sin \left (x \right )^{2}\right ) y^{\prime } = 0 \]

4418

\[ {} \cos \left (y\right )+\sin \left (y\right ) \left (x -\sin \left (y\right ) \cos \left (y\right )\right ) y^{\prime } = 0 \]

4419

\[ {} y^{3}+\left (3 x^{2}-2 x y^{2}\right ) y^{\prime } = 0 \]

4420

\[ {} \left (y^{\prime }+1\right ) \ln \left (\frac {x +y}{x +3}\right ) = \frac {x +y}{x +3} \]

4421

\[ {} 2 x^{3} y y^{\prime }+3 x^{2} y^{2}+7 = 0 \]

4422

\[ {} x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

4423

\[ {} x^{2} \left (x y^{\prime }-y\right ) = y \left (x +y\right ) \]

4424

\[ {} y^{4}+x y+\left (x y^{3}-x^{2}\right ) y^{\prime } = 0 \]

4425

\[ {} x^{2}+3 \ln \left (y\right )-\frac {x y^{\prime }}{y} = 0 \]

4426

\[ {} x y^{\prime \prime } = x +y^{\prime } \]

4427

\[ {} y+\left (x y-x -y^{3}\right ) y^{\prime } = 0 \]

4428

\[ {} y+2 y^{3} y^{\prime } = \left (x +4 y \ln \left (y\right )\right ) y^{\prime } \]

4429

\[ {} y \ln \left (x \right ) \ln \left (y\right )+y^{\prime } = 0 \]

4430

\[ {} 2 x^{{3}/{2}}+x^{2}+y^{2}+2 y \sqrt {x}\, y^{\prime } = 0 \]

4431

\[ {} 2 x +y \cos \left (x y\right )+x \cos \left (x y\right ) y^{\prime } = 0 \]

4432

\[ {} y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2} = 0 \]

4433

\[ {} 2 y^{\prime }+x = 4 \sqrt {y} \]

4434

\[ {} 2 {y^{\prime }}^{3}-3 {y^{\prime }}^{2}+x = y \]

4435

\[ {} y^{\prime }-6 x \,{\mathrm e}^{x -y}-1 = 0 \]

4436

\[ {} \left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

4437

\[ {} y \sin \left (x \right )+\cos \left (x \right )^{2}-y^{\prime } \cos \left (x \right ) = 0 \]

4438

\[ {} y \left (6 y^{2}-x -1\right )+2 x y^{\prime } = 0 \]

4439

\[ {} y^{\prime } \left (x -\ln \left (y^{\prime }\right )\right ) = 1 \]

4440

\[ {} \left (\cos \left (x \right )+1\right ) y^{\prime }+\sin \left (x \right ) \left (\sin \left (x \right )+\sin \left (x \right ) \cos \left (x \right )-y\right ) = 0 \]

4441

\[ {} x +\sin \left (\frac {y}{x}\right )^{2} \left (y-x y^{\prime }\right ) = 0 \]

4442

\[ {} 2 x y^{4} {\mathrm e}^{y}+2 x y^{3}+y+\left (x^{2} y^{4} {\mathrm e}^{y}-x^{2} y^{2}-3 x \right ) y^{\prime } = 0 \]

4443

\[ {} x y^{3}-1+x^{2} y^{2} y^{\prime } = 0 \]

4444

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = 0 \]

4445

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }+9 y^{\prime }+9 y = 0 \]

4446

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

4447

\[ {} y^{\prime \prime \prime }+8 y = 0 \]

4448

\[ {} y^{\prime \prime \prime }-8 y = 0 \]

4449

\[ {} y^{\prime \prime \prime \prime }+4 y = 0 \]

4450

\[ {} y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0 \]

4451

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+16 y = 0 \]

4452

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

4453

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+5 y^{\prime \prime }+5 y^{\prime }-6 y = 0 \]

4454

\[ {} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime } = 0 \]

4455

\[ {} y^{\left (6\right )}-64 y = 0 \]

4456

\[ {} y^{\prime \prime }+6 y^{\prime }+10 y = 3 x \,{\mathrm e}^{-3 x}-2 \,{\mathrm e}^{3 x} \cos \left (x \right ) \]

4457

\[ {} y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 x} \left (x^{2}-3 x \sin \left (x \right )\right ) \]

4458

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = \left (x +{\mathrm e}^{x}\right ) \sin \left (x \right ) \]

4459

\[ {} y^{\prime \prime }+4 y = \sinh \left (x \right ) \sin \left (2 x \right ) \]

4460

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \cosh \left (x \right ) \sin \left (x \right ) \]

4461

\[ {} y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right )+x \cos \left (x \right ) \]

4462

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = {\mathrm e}^{2 x} \sin \left (2 x \right )+2 x^{2} \]

4463

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime } = x^{2}+x \,{\mathrm e}^{2 x} \]

4464

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime } = 7 x -3 \cos \left (x \right ) \]

4465

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = \sin \left (x \right ) \cos \left (2 x \right ) \]

4466

\[ {} y^{\left (5\right )}-3 y^{\prime \prime \prime }+y = 9 \,{\mathrm e}^{2 x} \]

4467

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 48 x \,{\mathrm e}^{x} \]

4468

\[ {} y^{\prime \prime \prime }-3 y^{\prime } = 9 x^{2} \]

4469

\[ {} y^{\left (5\right )}+4 y^{\prime \prime \prime } = 7+x \]

4470

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 36 x \,{\mathrm e}^{2 x} \]

4471

\[ {} y^{\prime \prime \prime \prime }+16 y = 64 \cos \left (2 x \right ) \]

4472

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }-y = 44 \sin \left (3 x \right ) \]

4473

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }+5 y^{\prime }+5 y = 5 \cos \left (2 x \right ) \]

4474

\[ {} y^{\prime \prime }+3 y^{\prime }+5 y = 5 \,{\mathrm e}^{-x} \sin \left (2 x \right ) \]

4475

\[ {} y^{\prime \prime \prime \prime }-y = 4 \,{\mathrm e}^{-x} \]

4476

\[ {} y^{\prime \prime }+4 y = 8 \sin \left (x \right )^{2} \]

4477

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (x \right ) \]

4478

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime } = 2 \,{\mathrm e}^{x} \]

4479

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = \left (1+x \right ) {\mathrm e}^{x}+2 \,{\mathrm e}^{2 x}+3 \,{\mathrm e}^{3 x} \]

4480

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 4 \,{\mathrm e}^{x} \cos \left (2 x \right ) \]

4481

\[ {} y^{\prime \prime }+4 y = 4 \sin \left (2 x \right ) \]

4482

\[ {} y^{\prime \prime }-y = 12 x^{2} {\mathrm e}^{x}+3 \,{\mathrm e}^{2 x}+10 \cos \left (3 x \right ) \]

4483

\[ {} y^{\prime \prime }+y = 2 \sin \left (x \right )-3 \cos \left (2 x \right ) \]

4484

\[ {} y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \left (x^{2}+10\right ) \]

4485

\[ {} y^{\prime \prime }-4 y = 96 x^{2} {\mathrm e}^{2 x}+4 \,{\mathrm e}^{-2 x} \]

4486

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (x \right )+10 \sin \left (2 x \right ) \]

4487

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 4 x -2+2 \,{\mathrm e}^{x} \sin \left (x \right ) \]

4488

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 4 x \,{\mathrm e}^{2 x} \sin \left (2 x \right ) \]

4489

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 15 \sin \left (2 x \right ) \]

4490

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 40 \sin \left (2 x \right ) \]

4491

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x}+5 \,{\mathrm e}^{2 x} \]

4492

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 10 \,{\mathrm e}^{x} \sin \left (x \right ) \]

4493

\[ {} y^{\prime \prime \prime }-2 y^{\prime }-4 y = 50 \sin \left (x \right )+50 \,{\mathrm e}^{2 x} \]

4494

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 12 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{3 x} \]

4495

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 32 \,{\mathrm e}^{2 x}+16 x^{3} \]

4496

\[ {} y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 72 \,{\mathrm e}^{3 x}+729 x^{2} \]

4497

\[ {} y^{\prime \prime }-y = \frac {1}{x}-\frac {2}{x^{3}} \]

4498

\[ {} y^{\prime \prime }-y = \frac {1}{\sinh \left (x \right )} \]

4499

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x} \]

4500

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{x}\right ) \]