6.49 Problems 4801 to 4900

Table 6.97: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

4801

\[ {}x y^{\prime } = y-x \cos \left (\frac {y}{x}\right )^{2} \]

4802

\[ {}x y^{\prime } = \left (-2 x^{2}+1\right ) \cot \left (y\right )^{2} \]

4803

\[ {}x y^{\prime } = y-\cot \left (y\right )^{2} \]

4804

\[ {}x y^{\prime }+y+2 x \sec \left (x y\right ) = 0 \]

4805

\[ {}x y^{\prime }-y+x \sec \left (\frac {y}{x}\right ) = 0 \]

4806

\[ {}x y^{\prime } = y+x \sec \left (\frac {y}{x}\right )^{2} \]

4807

\[ {}x y^{\prime } = \sin \left (x -y\right ) \]

4808

\[ {}x y^{\prime } = y+\sin \left (\frac {y}{x}\right ) x \]

4809

\[ {}x y^{\prime }+\tan \left (y\right ) = 0 \]

4810

\[ {}x y^{\prime }+x +\tan \left (x +y\right ) = 0 \]

4811

\[ {}x y^{\prime } = y-x \tan \left (\frac {y}{x}\right ) \]

4812

\[ {}x y^{\prime } = \left (1+y^{2}\right ) \left (x^{2}+\arctan \left (y\right )\right ) \]

4813

\[ {}x y^{\prime } = y+x \,{\mathrm e}^{\frac {y}{x}} \]

4814

\[ {}x y^{\prime } = x +y+x \,{\mathrm e}^{\frac {y}{x}} \]

4815

\[ {}x y^{\prime } = y \ln \left (y\right ) \]

4816

\[ {}x y^{\prime } = \left (1+\ln \left (x \right )-\ln \left (y\right )\right ) y \]

4817

\[ {}x y^{\prime }+\left (1-\ln \left (x \right )-\ln \left (y\right )\right ) y = 0 \]

4818

\[ {}x y^{\prime } = y-2 x \tanh \left (\frac {y}{x}\right ) \]

4819

\[ {}x y^{\prime }+n y = f \left (x \right ) g \left (x^{n} y\right ) \]

4820

\[ {}x y^{\prime } = y f \left (x^{m} y^{n}\right ) \]

4821

\[ {}\left (1+x \right ) y^{\prime } = x^{3} \left (3 x +4\right )+y \]

4822

\[ {}\left (1+x \right ) y^{\prime } = \left (1+x \right )^{4}+2 y \]

4823

\[ {}\left (1+x \right ) y^{\prime } = {\mathrm e}^{x} \left (1+x \right )^{n +1}+n y \]

4824

\[ {}\left (1+x \right ) y^{\prime } = a y+b x y^{2} \]

4825

\[ {}\left (1+x \right ) y^{\prime }+y+\left (1+x \right )^{4} y^{3} = 0 \]

4826

\[ {}\left (1+x \right ) y^{\prime } = \left (1-x y^{3}\right ) y \]

4827

\[ {}\left (1+x \right ) y^{\prime } = 1+y+\left (1+x \right ) \sqrt {1+y} \]

4828

\[ {}\left (x +a \right ) y^{\prime } = b x \]

4829

\[ {}\left (x +a \right ) y^{\prime } = b x +y \]

4830

\[ {}\left (x +a \right ) y^{\prime }+b \,x^{2}+y = 0 \]

4831

\[ {}\left (x +a \right ) y^{\prime } = 2 \left (x +a \right )^{5}+3 y \]

4832

\[ {}\left (x +a \right ) y^{\prime } = b +c y \]

4833

\[ {}\left (x +a \right ) y^{\prime } = b x +c y \]

4834

\[ {}\left (x +a \right ) y^{\prime } = y \left (1-a y\right ) \]

4835

\[ {}\left (a -x \right ) y^{\prime } = y+\left (c x +b \right ) y^{3} \]

4836

\[ {}2 x y^{\prime } = 2 x^{3}-y \]

4837

\[ {}2 x y^{\prime }+1 = 4 i x y+y^{2} \]

4838

\[ {}2 x y^{\prime } = y \left (1+y^{2}\right ) \]

4839

\[ {}2 x y^{\prime }+y \left (1+y^{2}\right ) = 0 \]

4840

\[ {}2 x y^{\prime } = \left (1+x -6 y^{2}\right ) y \]

4841

\[ {}2 x y^{\prime }+4 y+a +\sqrt {a^{2}-4 b -4 c y} = 0 \]

4842

\[ {}\left (1-2 x \right ) y^{\prime } = 16+32 x -6 y \]

4843

\[ {}\left (2 x +1\right ) y^{\prime } = 4 \,{\mathrm e}^{-y}-2 \]

4844

\[ {}2 \left (1-x \right ) y^{\prime } = 4 x \sqrt {1-x}+y \]

4845

\[ {}2 \left (1+x \right ) y^{\prime }+2 y+\left (1+x \right )^{4} y^{3} = 0 \]

4846

\[ {}3 x y^{\prime } = 3 x^{{2}/{3}}+\left (1-3 y\right ) y \]

4847

\[ {}3 x y^{\prime } = \left (2+x y^{3}\right ) y \]

4848

\[ {}3 x y^{\prime } = \left (1+3 x y^{3} \ln \left (x \right )\right ) y \]

4849

\[ {}x^{2} y^{\prime } = -y+a \]

4850

\[ {}x^{2} y^{\prime } = a +b x +c \,x^{2}+x y \]

4851

\[ {}x^{2} y^{\prime } = a +b x +c \,x^{2}-x y \]

4852

\[ {}x^{2} y^{\prime }+\left (1-2 x \right ) y = x^{2} \]

4853

\[ {}x^{2} y^{\prime } = a +b x y \]

4854

\[ {}x^{2} y^{\prime } = \left (b x +a \right ) y \]

4855

\[ {}x^{2} y^{\prime }+x \left (x +2\right ) y = x \left (1-{\mathrm e}^{-2 x}\right )-2 \]

4856

\[ {}x^{2} y^{\prime }+2 x \left (1-x \right ) y = {\mathrm e}^{x} \left (-1+2 \,{\mathrm e}^{x}\right ) \]

4857

\[ {}x^{2} y^{\prime }+x^{2}+x y+y^{2} = 0 \]

4858

\[ {}x^{2} y^{\prime } = \left (1+2 x -y\right )^{2} \]

4859

\[ {}x^{2} y^{\prime } = a +b y^{2} \]

4860

\[ {}x^{2} y^{\prime } = \left (a y+x \right ) y \]

4861

\[ {}x^{2} y^{\prime } = \left (a x +b y\right ) y \]

4862

\[ {}x^{2} y^{\prime }+a \,x^{2}+b x y+c y^{2} = 0 \]

4863

\[ {}x^{2} y^{\prime } = a +b \,x^{n}+x^{2} y^{2} \]

4864

\[ {}x^{2} y^{\prime }+2+x y \left (4+x y\right ) = 0 \]

4865

\[ {}x^{2} y^{\prime }+2+a x \left (1-x y\right )-x^{2} y^{2} = 0 \]

4866

\[ {}x^{2} y^{\prime } = a +b \,x^{2} y^{2} \]

4867

\[ {}x^{2} y^{\prime } = a +b \,x^{n}+c \,x^{2} y^{2} \]

4868

\[ {}x^{2} y^{\prime } = a +b x y+c \,x^{2} y^{2} \]

4869

\[ {}x^{2} y^{\prime } = a +b x y+c \,x^{4} y^{2} \]

4870

\[ {}x^{2} y^{\prime }+\left (x^{2}+y^{2}-x \right ) y = 0 \]

4871

\[ {}x^{2} y^{\prime } = 2 y \left (x -y^{2}\right ) \]

4872

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}-a y^{3} \]

4873

\[ {}x^{2} y^{\prime }+y^{2} a +b \,x^{2} y^{3} = 0 \]

4874

\[ {}x^{2} y^{\prime } = \left (a x +b y^{3}\right ) y \]

4875

\[ {}x^{2} y^{\prime }+x y+\sqrt {y} = 0 \]

4876

\[ {}x^{2} y^{\prime } = \sec \left (y\right )+3 x \tan \left (y\right ) \]

4877

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-x^{2}+y \]

4878

\[ {}\left (-x^{2}+1\right ) y^{\prime }+1 = x y \]

4879

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 5-x y \]

4880

\[ {}\left (x^{2}+1\right ) y^{\prime }+a +x y = 0 \]

4881

\[ {}\left (x^{2}+1\right ) y^{\prime }+a -x y = 0 \]

4882

\[ {}\left (-x^{2}+1\right ) y^{\prime }+a -x y = 0 \]

4883

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x +x y = 0 \]

4884

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x^{2}+x y = 0 \]

4885

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x^{2}+x y = 0 \]

4886

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (x^{2}+1\right )-x y \]

4887

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (3 x^{2}-y\right ) \]

4888

\[ {}\left (-x^{2}+1\right ) y^{\prime }+2 x y = 0 \]

4889

\[ {}\left (x^{2}+1\right ) y^{\prime } = 2 x \left (x -y\right ) \]

4890

\[ {}\left (x^{2}+1\right ) y^{\prime } = 2 x \left (x^{2}+1\right )^{2}+2 x y \]

4891

\[ {}\left (-x^{2}+1\right ) y^{\prime }+\cos \left (x \right ) = 2 x y \]

4892

\[ {}\left (x^{2}+1\right ) y^{\prime } = \tan \left (x \right )-2 x y \]

4893

\[ {}\left (-x^{2}+1\right ) y^{\prime } = a +4 x y \]

4894

\[ {}\left (x^{2}+1\right ) y^{\prime } = \left (2 b x +a \right ) y \]

4895

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

4896

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-y^{2} \]

4897

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-y \left (2 x -y\right ) \]

4898

\[ {}\left (-x^{2}+1\right ) y^{\prime } = n \left (1-2 x y+y^{2}\right ) \]

4899

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y \left (1-y\right ) = 0 \]

4900

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y \left (1+a y\right ) \]