5.1.81 Problems 8001 to 8100

Table 5.161: First order ode

#

ODE

Mathematica

Maple

18752

\[ {}y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime } = 0 \]

18753

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

18754

\[ {}2 x^{2} y-3 y^{4}+\left (3 x^{3}+2 x y^{3}\right ) y^{\prime } = 0 \]

18755

\[ {}y^{2}+2 x^{2} y+\left (2 x^{3}-x y\right ) y^{\prime } = 0 \]

18756

\[ {}x y^{\prime }-a y = 1+x \]

18757

\[ {}y^{\prime }+y = {\mathrm e}^{-x} \]

18758

\[ {}\cos \left (x \right )^{2} y^{\prime }+y = \tan \left (x \right ) \]

18759

\[ {}\left (1+x \right ) y^{\prime }-n y = {\mathrm e}^{x} \left (1+x \right )^{n +1} \]

18760

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = 4 x^{2} \]

18761

\[ {}y^{\prime }+\frac {y}{x} = y^{6} x^{2} \]

18762

\[ {}1+y^{2} = \left (\arctan \left (y\right )-x \right ) y^{\prime } \]

18763

\[ {}y^{\prime }+\frac {2 y}{x} = 3 x^{2} y^{{1}/{3}} \]

18764

\[ {}y^{\prime }+\frac {x y}{-x^{2}+1} = x \sqrt {y} \]

18765

\[ {}3 x \left (-x^{2}+1\right ) y^{2} y^{\prime }+\left (2 x^{2}-1\right ) y^{3} = a \,x^{3} \]

18766

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

18767

\[ {}x y^{\prime }-y = \sqrt {x^{2}+y^{2}} \]

18768

\[ {}x y^{\prime }-y = x \sqrt {x^{2}+y^{2}} \]

18769

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

18770

\[ {}\left (x^{2}-x^{2} y\right ) y^{\prime }+y^{2}+x y^{2} = 0 \]

18771

\[ {}y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}} = 1 \]

18772

\[ {}3 y^{\prime }+\frac {2 y}{1+x} = \frac {x^{3}}{y^{2}} \]

18773

\[ {}2 x -y+1+\left (2 y-x -1\right ) y^{\prime } = 0 \]

18774

\[ {}y^{\prime }+\frac {y}{\sqrt {-x^{2}+1}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

18775

\[ {}x y^{\prime }+\frac {y^{2}}{x} = y \]

18776

\[ {}x \left (-a^{2}+x^{2}+y^{2}\right )+y \left (x^{2}-y^{2}-b^{2}\right ) y^{\prime } = 0 \]

18777

\[ {}y^{\prime }+\frac {4 x y}{x^{2}+1} = \frac {1}{\left (x^{2}+1\right )^{3}} \]

18778

\[ {}x^{2} y-\left (y^{3}+x^{3}\right ) y^{\prime } = 0 \]

18779

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

18780

\[ {}x^{2}+y^{2}+1-2 x y y^{\prime } = 0 \]

18781

\[ {}x +y y^{\prime } = m \left (x y^{\prime }-y\right ) \]

18782

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right ) \]

18783

\[ {}\left (1+x \right ) y^{\prime }+1 = 2 \,{\mathrm e}^{y} \]

18784

\[ {}y^{\prime } = x^{3} y^{3}-x y \]

18785

\[ {}y+\left (a \,x^{2} y^{n}-2 x \right ) y^{\prime } = 0 \]

18786

\[ {}\left (1+6 y^{2}-3 x^{2} y\right ) y^{\prime } = 3 x y^{2}-x^{2} \]

18787

\[ {}y \left (x^{2}+y^{2}+a^{2}\right ) y^{\prime }+x \left (-a^{2}+x^{2}+y^{2}\right ) = 0 \]

18788

\[ {}\left (x^{2} y^{3}+x y\right ) y^{\prime } = 1 \]

18789

\[ {}y y^{\prime } = a x \]

18790

\[ {}\sqrt {a^{2}+x^{2}}\, y^{\prime }+y = \sqrt {a^{2}+x^{2}}-x \]

18791

\[ {}\left (x +y\right ) y^{\prime }+x -y = 0 \]

18792

\[ {}y y^{\prime }+b y^{2} = a \cos \left (x \right ) \]

18793

\[ {}2 x y+\left (y^{2}-x^{2}\right ) y^{\prime } = 0 \]

18794

\[ {}-x y^{\prime }+y = b \left (1+x^{2} y^{\prime }\right ) \]

18795

\[ {}3 y+2 x +4-\left (4 x +6 y+5\right ) y^{\prime } = 0 \]

18796

\[ {}\left (x^{3} y^{3}+x^{2} y^{2}+x y+1\right ) y+\left (x^{3} y^{3}-x^{2} y^{2}-x y+1\right ) x y^{\prime } = 0 \]

18797

\[ {}2 x^{2} y^{2}+y-\left (x^{3} y-3 x \right ) y^{\prime } = 0 \]

18798

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

18799

\[ {}y^{\prime }+\frac {n y}{x} = a \,x^{-n} \]

18800

\[ {}\left (x -y\right )^{2} y^{\prime } = a^{2} \]

18801

\[ {}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 y^{2} y^{\prime } x = 0 \]

18802

\[ {}{y^{\prime }}^{2}-a \,x^{3} = 0 \]

18803

\[ {}{y^{\prime }}^{3} \left (x +2 y\right )+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (y+2 x \right ) y^{\prime } = 0 \]

18804

\[ {}{y^{\prime }}^{3} = a \,x^{4} \]

18805

\[ {}4 y^{2} {y^{\prime }}^{2}+2 y^{\prime } x y \left (1+3 x \right )+3 x^{3} = 0 \]

18806

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

18807

\[ {}x -y y^{\prime } = a {y^{\prime }}^{2} \]

18808

\[ {}y = -a y^{\prime }+\frac {c +a \arcsin \left (y^{\prime }\right )}{\sqrt {-{y^{\prime }}^{2}+1}} \]

18809

\[ {}4 y = x^{2}+{y^{\prime }}^{2} \]

18810

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0 \]

18811

\[ {}y = 2 y^{\prime }+3 {y^{\prime }}^{2} \]

18812

\[ {}x \left (1+{y^{\prime }}^{2}\right ) = 1 \]

18813

\[ {}x^{2} = a^{2} \left (1+{y^{\prime }}^{2}\right ) \]

18814

\[ {}y^{2} = a^{2} \left (1+{y^{\prime }}^{2}\right ) \]

18815

\[ {}y^{2}+x y y^{\prime }-x^{2} {y^{\prime }}^{2} = 0 \]

18816

\[ {}y = y {y^{\prime }}^{2}+2 x y^{\prime } \]

18817

\[ {}y = \left (1+y^{\prime }\right ) x +{y^{\prime }}^{2} \]

18818

\[ {}x^{2} \left (-x y^{\prime }+y\right ) = y {y^{\prime }}^{2} \]

18819

\[ {}y = x y^{\prime }+\arcsin \left (y^{\prime }\right ) \]

18820

\[ {}{\mathrm e}^{4 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{2} = 0 \]

18821

\[ {}x y \left (-x y^{\prime }+y\right ) = x +y y^{\prime } \]

18822

\[ {}y^{\prime }+2 x y = x^{2}+y^{2} \]

18823

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2}-x^{2} = 0 \]

18824

\[ {}y = y^{\prime } \left (x -b \right )+\frac {a}{y^{\prime }} \]

18825

\[ {}x y^{2} \left ({y^{\prime }}^{2}+2\right ) = 2 y^{\prime } y^{3}+x^{3} \]

18826

\[ {}y = -x y^{\prime }+x^{4} {y^{\prime }}^{2} \]

18827

\[ {}{y^{\prime }}^{2}-9 y^{\prime }+18 = 0 \]

18828

\[ {}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0 \]

18829

\[ {}\left (x y^{\prime }-y\right )^{2} = a \left (1+{y^{\prime }}^{2}\right ) \left (x^{2}+y^{2}\right )^{{3}/{2}} \]

18830

\[ {}\left (x y^{\prime }-y\right )^{2} = {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+1 \]

18831

\[ {}3 y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+4 y^{2}-x^{2} = 0 \]

18832

\[ {}\left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (x +y y^{\prime }\right )+\left (x +y y^{\prime }\right )^{2} = 0 \]

18833

\[ {}\left (y y^{\prime }+n x \right )^{2} = \left (y^{2}+n \,x^{2}\right ) \left (1+{y^{\prime }}^{2}\right ) \]

18834

\[ {}y^{2} \left (-{y^{\prime }}^{2}+1\right ) = b \]

18835

\[ {}\left (x y^{\prime }-y\right ) \left (x +y y^{\prime }\right ) = h^{2} y^{\prime } \]

18836

\[ {}{y^{\prime }}^{2}+2 y^{\prime } y \cot \left (x \right ) = y^{2} \]

18837

\[ {}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0 \]

18838

\[ {}x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} = a \]

18839

\[ {}x y {y^{\prime }}^{2}+y^{\prime } \left (3 x^{2}-2 y^{2}\right )-6 x y = 0 \]

18840

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

18841

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x^{3} y+x^{2} y^{2}+x y^{3}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

18842

\[ {}{y^{\prime }}^{3}+m {y^{\prime }}^{2} = a \left (y+m x \right ) \]

18843

\[ {}{\mathrm e}^{3 x} \left (y^{\prime }-1\right )+{y^{\prime }}^{3} {\mathrm e}^{2 y} = 0 \]

18844

\[ {}\left (1-y^{2}+\frac {y^{4}}{x^{2}}\right ) {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+\frac {y^{2}}{x^{2}} = 0 \]

18845

\[ {}y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = b \]

18846

\[ {}y = x y^{\prime }+\frac {m}{y^{\prime }} \]

18847

\[ {}y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

18848

\[ {}y = x y^{\prime }+a \sqrt {1+{y^{\prime }}^{2}} \]

18849

\[ {}{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

18850

\[ {}y^{\prime } \sqrt {x} = \sqrt {y} \]

18851

\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2}+x^{3} = 0 \]