5.3.46 Problems 4501 to 4600

Table 5.375: Second order ode

#

ODE

Mathematica

Maple

14134

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x \]

14135

\[ {}y^{\prime \prime }+y = f \left (x \right ) \]

14136

\[ {}x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2} = 0 \]

14137

\[ {}x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-y = 0 \]

14146

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

14147

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

14148

\[ {}x y^{\prime \prime }+x^{2} y = 0 \]

14149

\[ {}y^{\prime \prime }+\alpha ^{2} y = 0 \]

14150

\[ {}y^{\prime \prime }-\alpha ^{2} y = 0 \]

14151

\[ {}y^{\prime \prime }+\beta y^{\prime }+\gamma y = 0 \]

14152

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

14153

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y = \sin \left (x \right ) \]

14159

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

14160

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0 \]

14161

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0 \]

14226

\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]

14228

\[ {}y^{\prime \prime } = a^{2} y \]

14229

\[ {}y^{\prime \prime } = \frac {a}{y^{3}} \]

14230

\[ {}x y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} x^{2} \]

14231

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+{y^{\prime }}^{3} = 0 \]

14232

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \sin \left (2 x \right ) \]

14233

\[ {}{y^{\prime \prime }}^{2}+{y^{\prime }}^{2} = a^{2} \]

14234

\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]

14237

\[ {}y^{\prime \prime } = 9 y \]

14238

\[ {}y^{\prime \prime }+y = 0 \]

14239

\[ {}y^{\prime \prime }-y = 0 \]

14240

\[ {}y^{\prime \prime }+12 y = 7 y^{\prime } \]

14241

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

14242

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

14243

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

14244

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

14245

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

14254

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = x \]

14255

\[ {}s^{\prime \prime }-a^{2} s = t +1 \]

14256

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]

14257

\[ {}y^{\prime \prime }-y = 5 x +2 \]

14258

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = {\mathrm e}^{x} \]

14259

\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = {\mathrm e}^{2 x} \]

14260

\[ {}y^{\prime \prime }+9 y = 6 \,{\mathrm e}^{3 x} \]

14261

\[ {}y^{\prime \prime }-3 y^{\prime } = 2-6 x \]

14262

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = {\mathrm e}^{-x} \cos \left (x \right ) \]

14263

\[ {}y^{\prime \prime }+4 y = 2 \sin \left (2 x \right ) \]

14267

\[ {}y^{\prime \prime }+2 h y^{\prime }+n^{2} y = 0 \]

14268

\[ {}y^{\prime \prime }+n^{2} y = h \sin \left (r x \right ) \]

14269

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]

14270

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

14271

\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (2 x \right )^{{3}/{2}}} \]

14275

\[ {}y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

14278

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

14281

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \sin \left (2 x \right ) \]

14304

\[ {}x^{\prime \prime }+x-x^{3} = 0 \]

14305

\[ {}x^{\prime \prime }+x+x^{3} = 0 \]

14306

\[ {}x^{\prime \prime }+x^{\prime }+x-x^{3} = 0 \]

14307

\[ {}x^{\prime \prime }+x^{\prime }+x+x^{3} = 0 \]

14308

\[ {}x^{\prime \prime } = \left (2 \cos \left (x\right )-1\right ) \sin \left (x\right ) \]

14310

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

14312

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

14313

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

14314

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

14320

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

14323

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 0 \]

14324

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

14327

\[ {}x^{2} y^{\prime \prime }-x y^{\prime } = 0 \]

14328

\[ {}x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \]

14329

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

14335

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

14337

\[ {}y^{\prime \prime }-y = 0 \]

14340

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14341

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14342

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14343

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14345

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

14346

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

14347

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

14348

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

14349

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

14350

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

14480

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = x \]

14482

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]

14483

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]

14484

\[ {}\sqrt {1-x}\, y^{\prime \prime }-4 y = \sin \left (x \right ) \]

14485

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+y \ln \left (x \right ) = x \,{\mathrm e}^{x} \]

14486

\[ {}y^{\prime \prime }-y = 0 \]

14487

\[ {}y^{\prime \prime }+y = 0 \]

14488

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

14489

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

14490

\[ {}y^{\prime \prime }-y = 0 \]

14492

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

14493

\[ {}y^{\prime \prime }-4 y = 31 \]

14494

\[ {}y^{\prime \prime }+9 y = 27 x +18 \]

14495

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = -3 x -\frac {3}{x} \]

14496

\[ {}4 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

14506

\[ {}y^{\prime \prime }+\alpha y = 0 \]

14522

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

14524

\[ {}y^{\prime \prime }-9 y = 2 \sin \left (3 x \right ) \]

14525

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right ) \]

14526

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{x}-3 x^{2} \]

14530

\[ {}y^{\prime \prime }-9 y = x +2 \]

14531

\[ {}y^{\prime \prime }+9 y = x +2 \]

14532

\[ {}y^{\prime \prime }-y^{\prime }+6 y = -2 \sin \left (3 x \right ) \]